Search results for: learning efficiency
8697 Teaching about Justice With Justice: How Using Experiential, Learner Centered Literacy Methodology Enhances Learning of Justice Related Competencies for Young Children
Authors: Bruna Azzari Puga, Richard Roe, Andre Pagani de Souza
Abstract:
abstract outlines a proposed study to examine how and to what extent interactive, experiential, learner centered methodology develops learning of basic civic and democratic competencies among young children. It stems from the Literacy and Law course taught at Georgetown University Law Center in Washington, DC, since 1998. Law students, trained in best literacy practices and legal cases affecting literacy development, read “law related” children’s books and engage in interactive and extension activities with emerging readers. The law students write a monthly journal describing their experiences and a final paper: a conventional paper or a children’s book illuminating some aspect of literacy and law. This proposal is based on the recent adaptation of Literacy and Law to Brazil at Mackenzie Presbyterian University in São Paulo in three forms: first, a course similar to the US model, often conducted jointly online with Brazilian and US law students; second, a similar course that combines readings of children’s literature with activity based learning, with law students from a satellite Mackenzie campus, for young children from a vulnerable community near the city; and third, a course taught by law students at the main Mackenzie campus for 4th grade students at the Mackenzie elementary school, that is wholly activity and discourse based. The workings and outcomes of these courses are well documented by photographs, reports, lesson plans, and law student journals. The authors, faculty who teach the above courses at Mackenzie and Georgetown, observe that literacy, broadly defined as cognitive and expressive development through reading and discourse-based activities, can be influential in developing democratic civic skills, identifiable by explicit civic competencies. For example, children experience justice in the classroom through cooperation, creativity, diversity, fairness, systemic thinking, and appreciation for rules and their purposes. Moreover, the learning of civic skills as well as the literacy skills is enhanced through interactive, learner centered practices in which the learners experience literacy and civic development. This study will develop rubrics for individual and classroom teaching and supervision by examining 1) the children’s books and students diaries of participating law students and 2) the collection of photos and videos of classroom activities, and 3) faculty and supervisor observations and reports. These rubrics, and the lesson plans and activities which are employed to advance the higher levels of performance outcomes, will be useful in training and supervision and in further replication and promotion of this form of teaching and learning. Examples of outcomes include helping, cooperating and participating; appreciation of viewpoint diversity; knowledge and utilization of democratic processes, including due process, advocacy, individual and shared decision making, consensus building, and voting; establishing and valuing appropriate rules and a reasoned approach to conflict resolution. In conclusion, further development and replication of the learner centered literacy and law practices outlined here can lead to improved qualities of democratic teaching and learning supporting mutual respect, positivity, deep learning, and the common good – foundation qualities of a sustainable world.Keywords: democracy, law, learner-centered, literacy
Procedia PDF Downloads 1288696 Efficiency of Lavandula angustifolia Mill and Zataria multiflora Boiss essential oils on nutritional indices of Tribolium confusum Jacquelin du Val (Col.: Tenebrionidae)
Authors: Karim Saeidi
Abstract:
One of the most important pests in the warehouses is the flour beetle, Tribolium confusum Jacquelin du Val (Col.: Tenebrionidae). Regarding the high degree of damage of stored product pests and dangerous effects of the chemical control using plant extracts and their components are some of the best approaches to control these pests. Antifeedant activity of plant extracts from Lavandula angustifolia Mill and Zataria multiflora Boiss using hydro-distillation were tested against the flour beetle, Tribolium confusum Jacquelin du Val. The nutritional indices: relative growth rate (RGR), relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), and feeding deterrence index (FDI) were measured for adult insects. Treatments were evaluated using a flour disk bioassay in the dark; at 25±1ᵒC and 60±5% R. H. Concentrations of 0, 0.1, 0.5, 0.75, 1, 1.5, and 2 μl/disk were prepared from each essential oil. After 72 h, nutritional indices were calculated. L. angustifolia oils were more effective than Z. multiflora oils by significantly decreasing the RGR, RCR, and ECI. Feeding deterrence index (FDI) of L. angustifolia essential oil was increased significantly as essential oil concentration increased. The essential oil of L. angustifolia was more effective on FDI than Z. multiflora in some concentration.Keywords: essential oil, nutritional indices, Tribolium confusum
Procedia PDF Downloads 4038695 Increasing Health Education Tools Satisfaction in Nursing Staffs
Authors: Lu Yu Jyun
Abstract:
Background: Health education is important nursing work aiming to strengthen patients’ self-caring ability and family members. Our department educates through three methods, including speech education, flyer and demonstration video education. The satisfaction rate of health education tool use is 54.3% in nursing staff. The main reason is there hadn’t been a storage area for flyers, causing extra workload in assessing flyers. The satisfaction rate of health education in patients and families is 70.7%. We aim to improve this situation between 13th April and 6th June 2021. Method: We introduce the ECRS method to erase repetitive and redundant actions. We redesign the health education tool usage workflow to improve nursing staffs’ efficiency and further enhance nursing staffs care quality and working satisfaction. Result: The satisfaction rate of health education tool usage in nursing staff elevated from 54.3% to 92.5%. The satisfaction rate of health education in patients and families elevated from 70.7% to 90.2%. Conclusion: The assessment time of health care tools dropped from 10minutes to 3minutes. This significantly reduced the nursing staffs’ workload. 1213 paper is saved in one month and 14,556 a year in the estimate; we save the environment via this action. Health education map implemented in other nursing departments since October due to its’ high efficiency and makes health care tools more humanize.Keywords: health, education tools, satisfaction, nursing staff
Procedia PDF Downloads 1548694 The Academic Achievement of Writing via Project-Based Learning
Authors: Duangkamol Thitivesa
Abstract:
This paper focuses on the use of project work as a pretext for applying the conventions of writing, or the correctness of mechanics, usage, and sentence formation, in a content-based class in a Rajabhat University. Its aim was to explore to what extent the student teachers’ academic achievement of the basic writing features against the 70% attainment target after the use of project is. The organization of work around an agreed theme in which the students reproduce language provided by texts and instructors is expected to enhance students’ correct writing conventions. The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test and student writing works. The scores in the summative achievement test were analyzed by mean score, standard deviation, and percentage. It was found that the student teachers do more achieve of practicing mechanics and usage, and less in sentence formation. The students benefited from the exposure to texts during conducting the project; however, their automaticity of how and when to form phrases and clauses into simple/complex sentences had room for improvement.Keywords: project-based learning, project work, writing conventions, academic achievement
Procedia PDF Downloads 3358693 The Intercultural Communicative Competence (ICC) Perspective in the Film Classroom
Authors: Yan Zhang
Abstract:
With the development of commercial movies, more and more instructors are drawn to adapt film pedagogy to teach history and culture. By challenging traditional standards of classroom culture, instruction through film represents an intersection of modernity and adaptability which is no longer optional but essential to maintaining educational accessibility. First, this presentation describes special features of the film that can be used in the classroom and help students acquire intercultural communicative competence (ICC) and achieve the learning goal. Second, the author brings forward the 5 A STAIRCASE model (Acknowledge-Adjust-Acculturate-Act-Assess) to explore how students acquire international communicative competence. Third, this article presents the intersections between new digital environments and classroom practice, such as how films can contribute to combining classical and contemporary Chinese cultures seamlessly and how film pedagogy can be an effective way to get students to engage in deeper critical thinking by exposing them to visuals, music, language, and styling which do not exist in traditional learning formats. Last, the student’s final video project will be exemplified at the end, demonstrating how to engage students in the analysis and experience of history and culture.Keywords: intercultural education, curriculum, media, history
Procedia PDF Downloads 808692 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 998691 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin
Procedia PDF Downloads 3288690 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency
Abstract:
Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.Keywords: thermoelectric, finite element method, 3d print, energy conversion
Procedia PDF Downloads 718689 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza
Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue
Abstract:
Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.Keywords: COVID-19, Fastai, influenza, transfer network
Procedia PDF Downloads 1478688 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback
Authors: P. Nafisi Poor, P. Javid
Abstract:
Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability
Procedia PDF Downloads 1378687 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers
Authors: Ayşegül Çabuk, Mine Işıksal
Abstract:
Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.Keywords: reasoning, mathematics learning, middle grade students
Procedia PDF Downloads 4268686 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms
Authors: Samantha Rix
Abstract:
The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.Keywords: cognitive processing, language learners, language proficiency, learning strategies
Procedia PDF Downloads 4808685 Creating Bridges: The Importance of Intergenerational Experiences in the Educational Context
Authors: A. Eiguren-Munitis, N. Berasategi, J. M. Correa
Abstract:
Changes in family structures, immigration, economic crisis, among others, hinder the connection between different generations. This situation gives rise to a greater lack of social protection of the groups in vulnerable situations, such as the elderly and children. There is a growing need to search for shared spaces where different generations manage to break negative stereotypes and interact with each other. The school environment provides a favourable context in which the approach of different generations can be worked on. The intergenerational experiences that take place within the school context help to introduce the educational ideology for a lifetime. This induces bilateral learning, which encourages citizen participation. For this reason, the general objective of this research is to deepen the impact that intergenerational experiences have on participating students. The research is carried out based on mixed methods. The qualitative and quantitative evaluation included pre-test and post-test questionnaires (n=148) and group interviews (n=43). The results indicate that the intergenerational experiences influence different levels, on the one hand, help to promote school motivation and on the other hand, help to reduce negative stereotypes towards older people thus contributing to greater social cohesion.Keywords: intergenerational learning, school, stereotypes, social cohesion
Procedia PDF Downloads 1458684 Analysing Stem Student Interests in Developing Critical Thinking Skills in Pakistan
Authors: Muhammad Ramzan
Abstract:
STEM Education and Critical Thinking Skills are important 21st-century skills. STEM Education is necessary to promote secondary school students’ critical thinking skills. These skills are critical for teachers to respond to students. Pakistan is in the preliminary stages of integrating STEM Education in institutions like other developing countries. Unfortunately, most secondary school students in Pakistan are unaware of STEM Education and teachers are not applying critical thinking skills in classrooms. The study's objectives mainly deal with; to identify the importance of STEM Education in the teaching-learning process; to find out the factors affecting critical thinking skills that can develop interest in students in STEM Education and suggestions on how to improve critical thinking skills in students regarding STEM Education. This study was descriptive. The population of the study was secondary school students. Data was collected from 200 secondary school students through a questionnaire. The research results show that critical thinking skills develop interest in students towards STEM Education.Keywords: STEM education, teachers, students, critical thinking skills, teaching and learning process
Procedia PDF Downloads 508683 The Current Status of Integrating Information and Communication Technology in Teaching at Sultan Qaboos University
Authors: Ahmed Abdelrahman, Ahmed Abdelraheem
Abstract:
There are many essential factors affecting the integration of information and communication technology (ICT) into teaching and learning, including technology infrastructure, institutional support, professional development, and faculty members’ beliefs regarding ICT integration. The present research project investigated the current status of integrating ICT into teaching and learning at Sultan Qaboos University (SQU). A sample of 220 faculty members from six different colleges and four administrators from the Center of Educational Technology (CET) and the Center for Information Systems (CIS) at SQU in Oman were chosen, and quantitative, qualitative design using a semi-structured questionnaire, interviews and checklists were employed. The findings show that SQU had a high availability of ICT infrastructure in terms of hardware, software, and support services, as well as adequate computer labs for educational purposes. However, the results also indicated that, although SQU provided a series of professional development workshops related to using ICT in teaching, few faculty members were interested. Furthermore, the finding indicated that the degree of ICT integration into teaching at SQU was at a medium level.Keywords: information and communication technology, integration, professional development, teaching
Procedia PDF Downloads 1718682 The Effects of Racial Cohesion among White and Maori Populations on Healthcare in New Zealand
Authors: Thomas C. Nash
Abstract:
New Zealand has a small, yet racially diverse, population of only 4.6 million people, consisting of a majority European immigrant population and a large indigenous Maori population. Because disparities in healthcare often exist among minority populations, it could be expected that the White and Maori populations of New Zealand would have unequal access to healthcare. In order to understand the ways these disparities may present themselves, it became important to travel to New Zealand in order to interview both Western and natural healthcare professionals, public health officials, health activists and Maori people. In observing the various mechanisms within the New Zealand healthcare system, some stand out as effective ways of alleviating the racial disparities often seen in healthcare. These include the efficiency of regional District Health Boards, the benefits of individuals making decisions regarding their treatment plans and the importance of cohesion among the Maori and White populations. In forming a conclusion around these observations, it is evident that the integration of Maori culture into contemporary New Zealand has benefited the healthcare system. This unity has generated support for non-Western medical treatments, in turn forming a healthcare system that creates low barriers to entry for non-traditional forms of healthcare. These low barriers allow individuals to allocate available healthcare resources in ways that are most beneficial for them and are consistent with their tastes and preferences, maximizing efficiency.Keywords: alternative and complementary healthcare, low barriers to entry, Maori populations, racial cohesion
Procedia PDF Downloads 1988681 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water
Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer
Abstract:
Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software
Procedia PDF Downloads 868680 Post-Combustion CO₂ Capture: From Membrane Synthesis to Module Intensification
Authors: Imran Khan Swati, Mohammad Younas
Abstract:
This work aims to explore the potential applications of polymeric hydrophobic membranes and green ionic liquids (ILs). Protic and aprotic ILs were synthesized in the lab., characterized, and tested for CO₂/N₂ and CO₂/CH₄ separation using hydrophobic polymeric membranes via supported ionic liquid membrane (SILM). ILs were verified by FTIR spectroscopy. The SILMs were stable at room temperature up to 0.5 MPa. For CO₂, [BSmim][tos] had the greatest coefficient of solubility and permeability, along with all ILs. At 0.5 MPa, IL [BSmim][tos] was found with a selectivity of 56.2 and 47.5 for pure CO₂/N₂ and CO₂/CH₄, respectively. The ILs synthesized for this study are rated as [BSmim][tos]>[BSmpy][tos]>[Bmim][Cl]>[Bpy][Cl] based on their SILM separation performance. Furthermore, high values of selectivity of [BSmim][tos] and [BSmpy][tos] support the use of ILs for CO₂ separation using SILMs. The study was extended to synthesize and test the ammonium-based ILs, [2-HEA][f] and [2-HEA][Hs]. These ILs achieved 50 % less selectivity for CO₂/N₂ as compared to [BSmim][tos] and [BSmpy][tos]. Nevertheless, the permeability of CO₂ achieved with [2-HEA][f] and [2-HEA][Hs] is more than 20 times higher than the [BSmim][tos] and [BSmpy][tos]. Later, the CO₂/N₂ permeability and selectivity study was extended using a flat sheet membrane contactor with recirculated IL. The contact angle effects, liquid entry pressure (LEP), initial CO₂ concentration, and type of solvents and membrane material on the CO₂ capture efficiency and membrane wetting in the post-combustion capture (PCC) process have been experimentally investigated and evaluated. Polytetrafluoroethylene (PTFE) has shown the most hydrophobic property with 6-170 loss in the contact angle. Furthermore, [Omim][BF4] and [Bmim][BF6] have exhibited only 5-8 % loss in LEP using PTFE membrane support. The CO₂ capture efficiency has been achieved as 80.8-99.8 % in different combinations of ILs and membrane support, keeping all other variables constant. While increasing CO₂ concentration from 15 to 45 % vol., an increase of nearly three folds in the CO₂ mass transfer flux was observed. The combination of [Omim][BF4] and PTFE membrane witnessed good long-term stability with only a 20 % loss in CO₂ capture efficiency in 480 min of continuous operation. A 3- D simulation model for non-dispersive solvent absorption in membrane contactors provides insight into the optimum design of a separation system for a specific application minimizing the overall cost and making the process environment-friendly.Keywords: Post-combustion CO2 capture, membrane synthesis, process development, permeability and selectivity, ionic liquids
Procedia PDF Downloads 748679 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1358678 Evaluation: Developing An Appropriate Survey Instrument For E-Learning
Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King
Abstract:
A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.Keywords: evaluation, online courses, student survey, teaching effectiveness
Procedia PDF Downloads 2688677 Motivating EFL Students to Speak English through Flipped Classroom Implantation
Authors: Mohamad Abdullah
Abstract:
Recent Advancements in technology have stimulated deep change in the language learning classroom. Flipped classroom as a new pedagogical method is at the center of this change. It turns the classroom into a student-centered environment and promotes interactive and autonomous learning. The present study is an attempt to examine the effectiveness of the Flipped Classroom Model (FCM) on students’ motivation level in English speaking performance. This study was carried out with 27 undergraduate female English majors who enrolled in the course of Advanced Communication Skills (ENGL 154) at Buraimi University College (BUC). Data was collected through Motivation in English Speaking Performance Questionnaire (MESPQ) which has been distributed among the participants of this study pre and post the implementation of FCM. SPSS was used for analyzing data. The Paired T-Test which was carried out on the pre-post of (MESPQ) showed a significant difference between them (p < .009) that revealed participants’ tendency to increase their motivation level in English speaking performance after the application of FCM. In addition, respondents of the current study reported positive views about the implementation of FCM.Keywords: english speaking performance, motivation, flipped classroom model, learner-contentedness
Procedia PDF Downloads 1378676 Challenges Encountered by English Language Teachers in Same-Ability Classrooms: Evidence from United Arab Emirates High Schools
Authors: Eman Mohamed Abdelwahab, Badreyya Alkhanbooli
Abstract:
This study focuses on exploring the challenges encountered by English language teachers in same-ability English language classrooms in the United Arab Emirates public schools. This qualitative study uses open-ended questions for data collection from teacher participants. The study sample includes the participation of 60 English language teachers from 8 public schools across 4 emirates/cities in the United Arab Emirates. The study results highlight a number of challenges that are mostly encountered by English language teachers in their classrooms while teaching in same-ability classrooms, including lack of diversity in abilities, class-time limitation, difficulty in engaging all students (especially lower-achieving students), limited opportunities for peer learning and limited linguistic diversity. A set of suggestions is to be provided by participating teachers and researchers to improve the same-ability teaching and learning experience in English language classrooms.Keywords: English language teaching, same ability grouping, ESL, English language learners
Procedia PDF Downloads 668675 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1688674 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1488673 Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France
Authors: Farzaneh Sarbandi Farahani
Abstract:
Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning
Procedia PDF Downloads 958672 Assessment of the Efficiency of Virtual Orthodontic Consultations during COVID-19
Abstract:
Aims: We aimed to assess the efficiency of ‘Attend Anywhere’ orthodontic clinics within a district general hospital during COVID- 19. Our secondary aim was to pilot a questionnaire to assess patient satisfaction with virtual orthodontic appointments. Design: The study design is a service evaluation including pilot questionnaire. Methods: The average number of patients seen per virtual clinic and the number of patients failing to attend was compared to face-to-face clinics. The capability of virtual appointments to be successful in preventing the need for a face-to-face appointment was assessed. Patients were invited to complete a telephone pilot questionnaire focusing on patient satisfaction and accessibility. Results: There was a small increase in the number of patients failing to attend virtual appointments, with a third of the patients who did not attend failing to receive the appointment link. 81.9% of virtual clinic appointments were successful and prevented the need for a face-to-face appointment. Overall patients were very satisfied with their virtual orthodontic appointment and the majority required no assistance to access the service. Conclusions: The use of ‘Attend Anywhere’ clinics in orthodontics offers patients and clinicians an effective and efficient alternative to face-to-face appointments that patients on average find easy to use and completely satisfactory.Keywords: clinics, COVID, orthodontics, patient satisfaction, virtual
Procedia PDF Downloads 1298671 Adsorbent Removal of Oil Spills Using Bentonite Clay
Authors: Saad Mohamed Elsaid Abdelrahman
Abstract:
The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study.Keywords: adsorbent, bentonite clay, oil spills, removal
Procedia PDF Downloads 938670 Embodiment Design of an Azimuth-Altitude Solar Tracker
Authors: M. Culman, O. Lengerke
Abstract:
To provide an efficient solar generation system, the embodiment design of a two axis solar tracker for an array of photovoltaic (PV) panels destiny to supply the power demand on off-the-grid areas was developed. Photovoltaic cells have high costs in relation to t low efficiency; and while a lot of research and investment has been made to increases its efficiency a few points, there is a profitable solution that increases by 30-40% the annual power production: two axis solar trackers. A solar tracker is a device that supports a load in a perpendicular position toward the sun during daylight. Mounted on solar trackers, the solar panels remain perpendicular to the incoming sunlight at day and seasons so the maximum amount of energy is outputted. Through a preview research done it was justified why the generation of solar energy through photovoltaic panels mounted on dual axis structures is an attractive solution to bring electricity to remote off-the-grid areas. The work results are the embodiment design of an azimuth-altitude solar tracker to guide an array of photovoltaic panels based on a specific design methodology. The designed solar tracker is mounted on a pedestal that uses two slewing drives‚ with a nominal torque of 1950 Nm‚ to move a solar array that provides 3720 W from 12 PV panels.Keywords: azimuth-altitude sun tracker, dual-axis solar tracker, photovoltaic system, solar energy, stand-alone power system
Procedia PDF Downloads 2638669 An Exploration of the Effects of Individual and Interpersonal Factors on Saudi Learners' Motivation to Learn English as a Foreign Language
Authors: Fakieh Alrabai
Abstract:
This paper presents an experimental study designed to explore some of the learner’s individual and interpersonal factors (e.g. persistence, interest, regulation, satisfaction, appreciation, etc.) that Saudi learners experience when learning English as a Foreign Language and how learners’ perceptions of these factors influence various aspects of their motivation to learn English language. As part of the study, a 27-item structured survey was administered to a randomly selected sample of 105 Saudi learners from public schools and universities. Data collected through the survey were subjected to some basic statistical analyses, such as "mean" and "standard deviation". Based on the results from the analysis, a number of generalizations and conclusions are made in relation to how these inherent factors affect Saudi learners’ motivation to learn English as a foreign language. In addition, some recommendations are offered to Saudi academics on how to effectively make use of such factors, which may enable Saudi teachers and learners of English as a foreign language to achieve better learning outcomes in an area widely associated by Saudis with lack of success.Keywords: persistence, interest, appreciation, satisfaction, SL/FL motivation
Procedia PDF Downloads 4208668 Treatment of Greywater at Household by Using Ceramic Tablet Membranes
Authors: Abdelkader T. Ahmed
Abstract:
Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.Keywords: ceramic membranes, filtration, greywater, wastewater treatment
Procedia PDF Downloads 334