Search results for: three-layer adhesive joints
162 Geomechanics Properties of Tuzluca (Eastern. Turkey) Bedded Rock Salt and Geotechnical Safety
Authors: Mehmet Salih Bayraktutan
Abstract:
Geomechanical properties of Rock Salt Deposits in Tuzluca Salt Mine Area (Eastern Turkey) are studied for modeling the operation- excavation strategy. The purpose of this research focused on calculating the critical value of span height- which will meet the safety requirements. The Mine Site Tuzluca Hills consist of alternating parallel bedding of Salt ( NaCl ) and Gypsum ( CaS04 + 2 H20) rocks. Rock Salt beds are more resistant than narrow Gypsum interlayers. Rock Salt beds formed almost 97 percent of the total height of the Hill. Therefore, the geotechnical safety of Galleries depends on the mechanical criteria of Rock Salt Cores. General deposition of Tuzluca Basin was finally completed by Tuzluca Evaporites, as for the uppermost stratigraphic unit. They are currently running mining operations performed by classic mechanical excavation, room and pillar method. Rooms and Pillars are currently experiencing an initial stage of fracturing in places. Geotechnical safety of the whole mining area evaluated by Rock Mass Rating (RMR), Rock Quality Designation (RQD) spacing of joints, and the interaction of groundwater and fracture system. In general, bedded rock salt Show large lateral deformation capacity (while deformation modulus stays in relative small values, here E= 9.86 GPa). In such litho-stratigraphic environments, creep is a critical mechanism in failure. Rock Salt creep rate in steady-state is greater than interbedding layers. Under long-lasted compressive stresses, creep may cause shear displacements, partly using bedding planes. Eventually, steady-state creep in time returns to accelerated stages. Uniaxial compression creep tests on specimens were performed to have an idea of rock salt strength. To give an idea, on Rock Salt cores, average axial strength and strain are found as 18 - 24 MPa and 0.43-0.45 %, respectively. Uniaxial Compressive strength of 26- 32 MPa, from bedded rock salt cores. Elastic modulus is comparatively low, but lateral deformation of the rock salt is high under the uniaxial compression stress state. Poisson ratio = 0.44, break load = 156 kN, cohesion c= 12.8 kg/cm2, specific gravity SG=2.17 gr/cm3. Fracture System; spacing of fractures, joints, faults, offsets are evaluated under acting geodynamic mechanism. Two sand beds, each 4-6 m thick, exist near to upper level and at the top of the evaporating sequence. They act as aquifers and keep infiltrated water on top for a long duration, which may result in the failure of roofs or pillars. Two major active seismic ( N30W and N70E ) striking Fault Planes and parallel fracture strands have seismically triggered moderate risk of structural deformation of rock salt bedding sequence. Earthquakes and Floods are two prevailing sources of geohazards in this region—the seismotectonic activity of the Mine Site based on the crossing framework of Kagizman Faults and Igdir Faults. Dominant Hazard Risk sources include; a) Weak mechanical properties of rock salt, gypsum, anhydrite beds-creep. b) Physical discontinuities cutting across the thick parallel layers of Evaporite Mass, c) Intercalated beds of weak cemented or loose sand, clayey sandy sediments. On the other hand, absorbing the effects of salt-gyps parallel bedded deposits on seismic wave amplitudes has a reducing effect on the Rock Mass.Keywords: bedded rock salt, creep, failure mechanism, geotechnical safety
Procedia PDF Downloads 191161 Anterior Tooth Misalignment: Orthodontics or Restorative Treatment
Authors: Maryam Firouzmandi, Moosa Miri
Abstract:
Smile is considered to be one of the most effective methods of influencing people. Increasing numbers of patients are requesting cosmetic dental procedures to achieve the perfect smile. Based on the patient’s age, oral and facial characteristics, and the dentist’s expertise, different concepts of treatment would be available. Orthodontics is the most conservative and the ideal treatment alternative for crowded anterior teeth; however, it may be rejected by patients due to occupational limitations of time, physical discomfort including pain and functional limitations, psychological discomfort, and appearance during treatment. In addition, orthodontic treatment will not resolve deficits of contour and color of the anterior teeth. In consequence, patients may demand restorative techniques to resolve their anterior mal-alignment instead, often called "instant orthodontics". Following its introduction, however, adhesive dentistry has suffered at times from overuse. Creating short-term attractive smiles at the expense of long-term dental health and optimal tooth biomechanics by using cosmetic techniques should not be considered an ethical approach. The objective of this narrative review was to investigate the literature for guidelines with regard to decision making and treatment planning for anterior tooth mal-alignment. In this regard, indications of orthodontic, restorative, combination of both treatments, and adjunctive periodontal surgery were discussed in clinical cases to achieve a proportional smile. Restorative modalities would include disking, cosmetic contouring, veneers, and crowns and were compared with limited or comprehensive orthodontic options. A rapid review was also presented on pros and cons of snap on smile to mask malalignments. Diagnostic tools such as mock up, wax up, and digital smile design were also considered to achieve more conservative and functional treatments with respect to biologic factors.Keywords: crowding, misalignment, veneer, crown, orthodontics
Procedia PDF Downloads 116160 Adolescent and Adult Hip Dysplasia on Plain Radiographs. Analysis of Measurements and Attempt for Optimization of Diagnostic and Performance Approaches for Patients with Periacetabular Osteotomy (PAO).
Authors: Naum Simanovsky MD, Michael Zaidman MD, Vladimir Goldman MD.
Abstract:
105 plain AP radiographs of normal adult pelvises (210 hips) were evaluated. Different measurements of normal and dysplastic hip joints in 45 patients were analyzed. Attempt was made to establish reproducible, easy applicable in practice approach for evaluation and follow up of patients with hip dysplasia. The youngest of our patients was 11 years and the oldest was 47 years. Only one of our patients needed conversion to total hip replacement (THR) during ten years of follow-up. It was emphasized that selected set of measurements was built for purpose to serve, especially those who’s scheduled or undergone PAO. This approach was based on concept of acetabulum-femoral head complex and importance of reliable reference points of measurements. Comparative analysis of measured parameters between normal and dysplastic hips was performed. Among 10 selected parameters, we use already well established such as lateral center edge angle and head extrusion index, but to serve specific group of patients with PAO, new parameters were considered such as complex lateralization and complex proximal migration. By our opinion proposed approach is easy applicable in busy clinical practice, satisfactorily delineate hip pathology and give to surgeon who’s going to perform PAO guidelines in condensed form. It is also useful tools for postoperative follow up after PAO.Keywords: periacetabular osteotomy, plain radiograph’s measurements, adolescents, adult
Procedia PDF Downloads 68159 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc
Authors: Michal Urzynicok, Krzysztof Kwiecinski
Abstract:
The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.Keywords: thor, vm12, dissimilar welding, weldability
Procedia PDF Downloads 154158 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint
Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu
Abstract:
With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning
Procedia PDF Downloads 78157 Geological Structure as the Main Factor in Landslide Deployment in Purworejo District Central Java Province Indonesia
Authors: Hilman Agil Satria, Rezky Naufan Hendrawan
Abstract:
Indonesia is vulnerable to geological hazard because of its location in subduction zone and have tropical climate. Landslide is one of the most happened geological hazard in Indonesia, based on Indonesia Geospasial data, at least 194 landslides recorded in 2013. In fact, research location is placed as the third city that most happened landslide in Indonesia. Landslide caused damage of many houses and wrecked the road. The purpose of this research is to make a landslide zone therefore can be used as one of mitigation consideration. The location is in Bruno, Porworejo district Central Java Province Indonesia at 109.903 – 109.99 and -7.59 – -7.50 with 10 Km x 10 Km wide. Based on geological mapping result, the research location consist of Late Miocene sandstone and claystone, and Pleistocene volcanic breccia and tuff. Those landslide happened in the lithology that close with fault zone. This location has so many geological structures: joints, faults and folds. There are 3 thrust faults, 1 normal faults, 4 strike slip faults and 6 folds. This geological structure movement is interpreted as the main factor that has triggered landslide in this location. This research use field data as well as samples of rock, joint, slicken side and landslide location which is combined with DEM SRTM to analyze geomorphology. As the final result of combined data will be presented as geological map, geological structure map and landslide zone map. From this research we can assume that there is correlation between geological structure and landslide locations.Keywords: geological structure, landslide, Porworejo, Indonesia
Procedia PDF Downloads 287156 Paper-Like and Battery Free Sensor Patches for Wound Monitoring
Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu
Abstract:
Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care
Procedia PDF Downloads 81155 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test
Authors: Mohit Chauhan, Atul Narayan
Abstract:
Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning
Procedia PDF Downloads 140154 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study
Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti
Abstract:
The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.Keywords: joint alignment of knee, gait analysis, genu recurvatum, heel lift, kinematics, motion-analysis
Procedia PDF Downloads 204153 Structural Characteristics of HPDSP Concrete on Beam Column Joints
Authors: Hari Krishan Sharma, Sanjay Kumar Sharma, Sushil Kumar Swar
Abstract:
Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals.Keywords: high performance densified small particle concrete (HPDSPC), steel fibre reinforced concrete (SFRC), slurry infiltrated concrete (SIFCON), Slurry infiltrated mat concrete (SIMCON)
Procedia PDF Downloads 303152 Salter Pelvic Osteotomy for the Treatment of Developmental Dysplasia of the Hip: Assessment of Postoperative Results and Risk Factors
Authors: Suvorov Vasyl, Filipchuk Viktor
Abstract:
Background: If non-surgical treatment of developmental dysplasia of the hip (DDH) fails or if DDH is late-detected, surgery is necessary. Salter pelvic osteotomy (SPO) is an effective surgical option for such cases. The objectives of this study were to assess the results after SPO, evaluate risk factors, and reveal those radiological parameters that may correlate with the results. Mid- and long-term postoperative results after SPO in 17 patients (22 hip joints) were analyzed. Risk factors included those that do not depend on the surgeon (patient's age, value of the acetabular index (AI) preoperatively, DDH Tonnis grade) and those that depend on the surgeon (amount of AI correction). To radiological parameters which may correlate with the amount of AI correction, we referred distance "d" and the lateral rotation angle. Results: SPO allows performing AI correction in ranges 24.1 ± 6.5°. Excellent and good clinical results were obtained in 95.5% of patients; excellent and good radiological results in 86.4% of patients. Risk factors that do not depend on the surgeon were older patient’s age and higher preoperative AI values (p < 0.05). The risk factor that depends on the surgeon was the amount of AI correction (p < 0.05). The distance "d" was recognized as a radiological parameter that may indicate sufficient AI correction (p < 0.05). Conclusion: In older patients with a higher preoperative AI value, the results will be predictably worse. The surgeon may influence the result with a greater amount of AI correction (which may also be indicated radiologically by the distance "d" values).Keywords: developmental dysplasia of the hip, results, risk factor, pelvic osteotomy, salter osteotomy
Procedia PDF Downloads 131151 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 295150 Real-Time Gesture Recognition System Using Microsoft Kinect
Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar
Abstract:
Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language
Procedia PDF Downloads 306149 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation
Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy
Abstract:
Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation
Procedia PDF Downloads 152148 Ground-Structure Interaction Analysis of Aged Tunnels
Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo
Abstract:
Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels
Procedia PDF Downloads 162147 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 268146 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics
Procedia PDF Downloads 163145 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks
Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano
Abstract:
Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks
Procedia PDF Downloads 111144 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 294143 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 301142 The Effect Training Program on Mixed Contractions on Both the Maximum Force and Explosive Force of the Lower Limbs Conducted Study to the Football Players Under the Age of 17 Years-Tiaret, Algeria
Authors: Saidia Houari
Abstract:
The game of football is one of the global sports activities that have witnessed a remarkable development in recent years in the physical, technical, rhetorical and psychological aspects, so the modern play in different teams and international teams quickly and forcefully in the exact technical performance, and this is due to the interest of international coaches. The good training of the players during the youth stage at the level of various aspects to develop all the techniques that have a great effectiveness in competitions according to scientific methods studied. The muscle strength plays a very important role achieving the performance player during the game and it is clear the need for the player in many situations, especially when jumping to hit the ball head or the goal on the goal or long passes of different types and in the performance of various skills by force and speed appropriate to the possession of the ball or the control of the court of the court while overcoming the body weight during the game it is known that the stronger the muscles of the athlete and the reduced joints injuries, and the strength increases energy saving such as Latin phosphate and glycogen, and develop the player for a game football volitional qualities of the most important of courage, determination And self-confidence. There are also some skill movements that can not be performed without a certain level of strength, so the development of power may affect the effectiveness of the long-term training system.Keywords: trainning program, maximum force and expolosive force, lowers limbs, under 17 years
Procedia PDF Downloads 104141 Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case
Authors: Sarakorn Sukaviriya
Abstract:
This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack.Keywords: steam-pipe leakage, steam leakage, weld crack analysis, weld defect
Procedia PDF Downloads 134140 Investigation of the Prevalence, Phenotypes, and Risk Factors Associated with Demodex Infestation and Its Relationship with Acne
Authors: Sina Alimohammadi, Mahnaz Banihashemi, Maryam Poursharif
Abstract:
Demodex is a mandatory parasite of pilosebaceous. D. folliculorum lives as a single parasite or as a number of parasites in hair follicles, and D. brevis as a single parasite living in sebaceous glands. Transmission of Demodex from one person to another requires direct skin contact; it also has a greater density in the forehead, cheeks, nose, and nasolabial folds. Demodex can cause some clinical symptoms such as follicular pityriasis, rosacea-like demodicosis, postural folliculitis, papules, seborrheic dermatitis, blepharitis, dermatitis around the lips, and hyperpigmented spots. In this study, the prevalence of Demodex species in patients referred to the dermatology department of Sayad Shirazi Hospital Gorgan, Iran, in the years 2019-2020 was investigated. Material and Methods: The study population consisted of 242 samples taken from the people referred to the dermatology department of Sayad Shirazi Hospital during the years 2019-2020, which were sampled by adhesive tape. All of the participants completed the questionnaires. The samples were examined microscopically for the presence of Demodex. Results: Out of 242 participants, 67 (27.68%) were infected with Demodex. Most cases of infection were observed in the group of 21 to 30 years (28 people; 11.57%) and then in the group of 31 to 40 years (21 people; 8.67%). Also, in the group of people under 10 years and over 60 years, no positive cases (0%) of Demodex were observed in microscopic examinations. Out of 11 variables, there was a statistically significant difference in relation to the three variables of age (P = 0.000003), use of cleansing solutions (P = 0.002), and the presence of acne (P = 0.0013). Conclusion: According to the results of this study, it was found that the incidence of Demodex in one group of acne patients is higher than in others, which emphasizes the possible role of Demodex in the pathogenesis of acne. In this study, there was an inverse relationship between the incidence of Demodex and the use of skin cleansing solutions. Also, the prevalence of Demodex is higher in the group of 20-30 years, and its prevalence does not increase with age. Due to the possibility of drug resistance in the future, regular studies on genotyping and drug resistance are recommended.Keywords: acne, demodex, mite, prevalence
Procedia PDF Downloads 89139 Brief Review of the Self-Tightening, Left-Handed Thread
Authors: Robert S. Giachetti, Emanuele Grossi
Abstract:
Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening
Procedia PDF Downloads 136138 Mass Media Products Consumption Patterns in Rural South-South, Nigeria Communities
Authors: Inemesit Akpan Umoren, Aniekan James Akpan
Abstract:
Media practitioners and information managers have often erroneously operated on the premise that media messages are received as disseminated to the extent that audiences of whatever background assimilate the content uniformly. This does not subsist since media audiences are often segmented in terms of educational level, social category, place of residence, gender, among others. While those who are highly educated, live in urban areas and are of highest standing are more likely to have direct access to the media, those in the rural areas and of low education and standing, may not have direct or easy access. These, therefore, informed the study to establish the consumption patterns of mass media products by residents of rural communities in south-south, Nigeria. The study, which was anchored on the multi-step flow and social categories theories, adopted a survey research design and a sample of 383 using Mayer’s 1979 guide drawn from nine rural communities in the south-south, Nigeria states of Akwa Ibom, Rivers and Edo. Findings among others showed that while a negligible percentage is highly exposed to media messages of all types, a greater member depend on opinion leaders, social groups, drinking joints, among other such for filtered content. It was concluded that since rural or community media organizations are very vital in ensuring media content get to all audience without necessarily being passing through intermediaries. Among the recommendations was that information managers and media organizations should always have in mind the ruralites while packaging their contents even in the mainstream media.Keywords: consumption, media, media product, pattern
Procedia PDF Downloads 146137 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures
Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth
Abstract:
Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).Keywords: fillet weld, fatigue, residual stress, structure integrity
Procedia PDF Downloads 144136 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 211135 The Immediate Effects of Thrust Manipulation for Thoracic Hyperkyphosis
Authors: Betul Taspinar, Eda O. Okur, Ismail Saracoglu, Ismail Okur, Ferruh Taspinar
Abstract:
Thoracic hyperkyphosis, is a well-known spinal phenomenon, refers to an excessive curvature (> 40 degrees) of the thoracic spine. The aim of this study was to explore the effectiveness of thrust manipulation on thoracic spine alignment. 31 young adults with hyperkyphosis diagnosed with Spinal Mouse® device were randomly assigned either thrust manipulation group (n=16, 11 female, 5 male) or sham manipulation group (n=15, 8 female, 7 male). Thrust and sham manipulations were performed by a blinded physiotherapist who is a certificated expert in musculoskeletal physiotherapy. Thoracic kyphosis degree was measured after the interventions via Spinal Mouse®. Wilcoxon test was used to analyse the data obtained before and after the manipulation for each group, whereas Mann-Whitney U test was used to compare the groups. The mean of baseline thoracic kyphosis degrees in thrust and sham groups were 50.69 o ± 7.73 and 48.27o ± 6.43, respectively. There was no statistically significant difference between groups in terms of initial thoracic kyphosis degrees (p=0.51). After the interventions, the mean of thoracic kyphosis degree in thrust and sham groups were measured as 44.06o ± 6.99 and 48.93o ± 6.57 respectively (p=0.03). There was no statistically significant difference between before and after interventions in sham group (p=0.33), while the mean of thoracic kyphosis degree in thrust group decreased significantly (p=0.00). Thrust manipulation can attenuate thoracic hyperkyphosis immediately in young adults by not using placebo effect. Manipulation might provide accurate proprioceptive (sensory) input to the spine joints and reduce kyphosis by restoring normal segment mobility. Therefore thoracic manipulation might be included in the physiotherapy programs to treat hyperkyphosis.Keywords: hyperkyphosis, manual therapy, spinal mouse, physiotherapy
Procedia PDF Downloads 345134 Prioritization Ranking for Managing Moisture Problems in a Building
Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri
Abstract:
Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.Keywords: water leakage, survey, causes, matrices, prioritization
Procedia PDF Downloads 99133 Ipsilateral Heterotopic Ossification in the Knee and Shoulder Post Long COVID-19
Authors: Raheel Shakoor Siddiqui, Calvin Mathias, Manikandar Srinivas Cheruvu, Bobin Varghese
Abstract:
A 58 year old gentleman presented to accident and emergency at the district general hospital with worsening shortness of breath and a non-productive cough over a period of five days. He was initially admitted under the medical team for suspicion of SARS-CoV-2 (COVID-19) pneumonitis. Subsequently, upon deterioration of observations and a positive COVID-19 PCR, he was taken to intensive care for invasive mechanical ventilation. He required frequent proning, inotropic support and was intubated for thirty-three days. After successful extubation, he developed myopathy with a limited range of motion to his right knee and right shoulder. Plain film imaging of these limbs demonstrated an unusual formation of heterotopic ossification without any precipitating trauma or surgery. Current literature demonstrates limited case series portraying heterotopic ossification post-COVID-19. There has been negligible evidence of heterotopic ossification in the ipsilateral knee and shoulder post-prolonged immobility secondary to a critical illness. Physiotherapy and rehabilitation are post-intensive care can be prolonged due to the formation of heterotopic ossification around joints. Prolonged hospital stays may lead to a higher risk of developing infections of the chest, urine and pressure sores. This raises the question of whether a severe systemic inflammatory immune response from the SARS-CoV-2 virus results in histopathological processes leading to the formation of heterotopic ossification not previously seen, requiring prolonged physiotherapy.Keywords: orthopaedics, rehabilitation, physiotherapy, heterotopic ossification, COVID-19
Procedia PDF Downloads 72