Search results for: stochastic gradient descent
812 Global Stability Of Nonlinear Itô Equations And N. V. Azbelev's W-method
Authors: Arcady Ponosov., Ramazan Kadiev
Abstract:
The work studies the global moment stability of solutions of systems of nonlinear differential Itô equations with delays. A modified regularization method (W-method) for the analysis of various types of stability of such systems, based on the choice of the auxiliaryequations and applications of the theory of positive invertible matrices, is proposed and justified. Development of this method for deterministic functional differential equations is due to N.V. Azbelev and his students. Sufficient conditions for the moment stability of solutions in terms of the coefficients for sufficiently general as well as specific classes of Itô equations are given.Keywords: asymptotic stability, delay equations, operator methods, stochastic noise
Procedia PDF Downloads 224811 Methodology for Risk Assessment of Nitrosamine Drug Substance Related Impurities in Glipizide Antidiabetic Formulations
Authors: Ravisinh Solanki, Ravi Patel, Chhaganbhai Patel
Abstract:
Purpose: The purpose of this study is to develop a methodology for the risk assessment and evaluation of nitrosamine impurities in Glipizide antidiabetic formulations. Nitroso compounds, including nitrosamines, have emerged as significant concerns in drug products, as highlighted by the ICH M7 guidelines. This study aims to identify known and potential sources of nitrosamine impurities that may contaminate Glipizide formulations and assess their presence. By determining observed or predicted levels of these impurities and comparing them with regulatory guidance, this research will contribute to ensuring the safety and quality of combination antidiabetic drug products on the market. Factors contributing to the presence of genotoxic nitrosamine contaminants in glipizide medications, such as secondary and tertiary amines, and nitroso group-complex forming molecules, will be investigated. Additionally, conditions necessary for nitrosamine formation, including the presence of nitrosating agents, and acidic environments, will be examined to enhance understanding and mitigation strategies. Method: The methodology for the study involves the implementation of the N-Nitroso Acid Precursor (NAP) test, as recommended by the WHO in 1978 and detailed in the 1980 International Agency for Research on Cancer monograph. Individual glass vials containing equivalent to 10mM quantities of Glipizide is prepared. These compounds are dissolved in an acidic environment and supplemented with 40 mM NaNO2. The resulting solutions are maintained at a temperature of 37°C for a duration of 4 hours. For the analysis of the samples, an HPLC method is employed for fit-for-purpose separation. LC resolution is achieved using a step gradient on an Agilent Eclipse Plus C18 column (4.6 X 100 mm, 3.5µ). Mobile phases A and B consist of 0.1% v/v formic acid in water and acetonitrile, respectively, following a gradient mode program. The flow rate is set at 0.6 mL/min, and the column compartment temperature is maintained at 35°C. Detection is performed using a PDA detector within the wavelength range of 190-400 nm. To determine the exact mass of formed nitrosamine drug substance related impurities (NDSRIs), the HPLC method is transferred to LC-TQ-MS/MS with the same mobile phase composition and gradient program. The injection volume is set at 5 µL, and MS analysis is conducted in Electrospray Ionization (ESI) mode within the mass range of 100−1000 Daltons. Results: The samples of NAP test were prepared according to the protocol. The samples were analyzed using HPLC and LC-TQ-MS/MS identify possible NDSRIs generated in different formulations of glipizide. It was found that the NAP test generated a various NDSRIs. The new finding, which has not been reported yet, discovered contamination of Glipizide. These NDSRIs are categorised based on the predicted carcinogenic potency and recommended its acceptable intact in medicines. The analytical method was found specific and reproducible.Keywords: NDSRI, nitrosamine impurities, antidiabetic, glipizide, LC-MS/MS
Procedia PDF Downloads 33810 The Role of NAD+ and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review
Authors: James Pietris
Abstract:
Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent.1This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.Keywords: glaucoma, nicotinamide, vitamin B3, optic neuropathy
Procedia PDF Downloads 106809 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel
Authors: Sellidj Abdelaziz, Lebaili Soltane
Abstract:
A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment
Procedia PDF Downloads 116808 Handshake Algorithm for Minimum Spanning Tree Construction
Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha
Abstract:
In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis
Procedia PDF Downloads 659807 Remote Radiation Mapping Based on UAV Formation
Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov
Abstract:
High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation
Procedia PDF Downloads 99806 Stochastic Repair and Replacement with a Single Repair Channel
Authors: Mohammed A. Hajeeh
Abstract:
This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.Keywords: repairable models, imperfect, availability, exponential distribution
Procedia PDF Downloads 287805 Experimental Study on Friction Factor of Oscillating Flow Through a Regenerator
Authors: Mohamed Saïd Kahaleras, François Lanzetta, Mohamed Khan, Guillaume Layes, Philippe Nika
Abstract:
This paper presents an experimental work to characterize the dynamic operation of a metal regenerator crossed by dry compressible air alternating flow. Unsteady dynamic measurements concern the pressure, velocity and temperature of the gas at the ends and inside the channels of the regenerator. The regenerators are tested under isothermal conditions and thermal axial temperature gradient.Keywords: friction factor, oscillating flow, regenerator, stirling machine
Procedia PDF Downloads 508804 Ensemble Sampler For Infinite-Dimensional Inverse Problems
Authors: Jeremie Coullon, Robert J. Webber
Abstract:
We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction
Procedia PDF Downloads 154803 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints
Procedia PDF Downloads 278802 Study of Half-Metallic Ferromagnetism in CeFeO3
Authors: A. Abbad, W. Benstaali
Abstract:
Using first-principles calculations based on the density functional theory and generalize gradient approximation, we predict electronic and magnetic properties of CeFeO3 orthorhombic perovskite. The calculated densities of states presented in this study identify the metallic behavior CeFeO3 when we use the GGA scheme, whereas when we use the GGA+U, we see that its exhibits half-metallic character with an integer magnetic moment of 24μB per formula unit at its equilibrium volume which makes this compound promising candidate for applications in spintronics.Keywords: CeFeO3, magnetic moment, half-metallic, electronic properties
Procedia PDF Downloads 369801 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery
Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox
Abstract:
Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification
Procedia PDF Downloads 134800 Evidence of Half-Metallicity in Cubic PrMnO3 Perovskite
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad
Abstract:
The electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3 were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, where U is on-site Coulomb interaction correction. The results show a half-metallic ferromagnetic ground state for PrMnO3 in GGA+U approached, while semi-metallic ferromagnetic character is observed in GGA. The results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.Keywords: first-principles, electronic properties, transition metal, materials science
Procedia PDF Downloads 466799 Investigating Ethnic Stereotypes and Perception of Anorexia Nervosa
Authors: Kaitlyn Deierlein, Janet Lydecker
Abstract:
Stereotypes surrounding anorexia nervosa are that the illness is commonly perceived as a self-inflicted disorder influenced by controlling parents, vanity, and cultural pressures. According to the authors' best knowledge minimal research has examined interactions with other factors, including gender and racial stereotypes involving this disorder. A common stereotype of this disease is that it mainly only affects Caucasian women and is very rarely seen in any other ethnicity. Previous literature has failed to investigate how visual body image and ethnic stereotypes affect the mental health of different ethnic groups, how various cultures impact the type of anorexia nervosa in the patient, and the different stereotypes associated with their eating disorder. Participants completed a pre-test questionnaire with vignettes, an image exposure portion, and a post-test questionnaire, which will all be evaluated and analyzed by ANOVA t-test and SPSS. Results showed that participants picked Caucasian females as more likely to have anorexia nervosa than those of Asian, Latin American, or African American descent subjects in both picture identification and vignettes. Future research should be conducted to further the results of this study by examining differences between gender stereotypes with anorexia nervosa as well as how sexuality has a role in perception.Keywords: anorexia nervosa, ethnicity, stereotypes, eating disorders, perception
Procedia PDF Downloads 74798 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 324797 Wall Shear Stress Under an Impinging Planar Jet Using the Razor Blade Technique
Authors: A. Ritcey, J. R. Mcdermid, S. Ziada
Abstract:
Wall shear stress was experimentally measured under a planar impinging air jet as a function of jet Reynolds number (Rejet = 5000, 8000, 11000) and different normalized impingement distances (H/D = 4, 6, 8, 10, 12) using the razor blade technique to complete a parametric study. The wall pressure, wall pressure gradient, and wall shear stress information were obtained.Keywords: experimental fluid mechanics, impinging planar jets, skin friction factor, wall shear stress
Procedia PDF Downloads 322796 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour
Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo
Abstract:
The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River
Procedia PDF Downloads 457795 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains
Authors: Reema Tiwari, U. C. Kulshrestha
Abstract:
As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium
Procedia PDF Downloads 128794 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 80793 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 72792 Nietzsche and Shakti: An Intercultural Analysis of Nietzsche's Experiment with the Eternal Feminine
Authors: Shruti Jain
Abstract:
During its independence struggle in the early 20th century, India witnessed trends of politicisation of various spiritual paths, one of them being that of Shaktism. Interestingly, Nietzsche’s teachings were being interpreted as being essentially the worship of Shakti. The present paper aims at investigating this claim and hence undertakes an intercultural archaeological excavation in the realm of the Goddess archetypes that Nietzsche’s work invokes. Ariadne is placed next to Radha, Baubo to Lajja Gauri, Medusa to Chhinnamasta, Hecate to Kali and Dhumavati and Athena to Sarawati. Indeed, the Eternal Feminine plays a vital role in Nietzsche’s writings. One might recall that Nietzsche even declared himself to be the first Psychologist of the Eternal Feminine. The present paper aims to illustrate how, the matter of the Eternal Feminine, like all other matters, is subjected to Nietzsche’s basic creative principle of transvaluation of values and new meaning making. In order to achieve this, Nietzsche applies what Heidegger calls a 'cross-wise striking-through' technique in his analysis of what can be termed as his engagement with Shaktism. Hence, not only is the mystical ascent and descent of the creative energy (Kundalini Shakti) dealt with under erasure in Thus Spake Zarathustra, but coincidentally also the Three Metamorphoses emerge as an instance of such an erasure, making the Devi invisible and yet not so invisible for an Indian reader.Keywords: eternal feminine, Nietzsche and India, Shaktism, transvaluation of values
Procedia PDF Downloads 157791 Using Gaussian Process in Wind Power Forecasting
Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.Keywords: wind power, Gaussien process, modelling, forecasting
Procedia PDF Downloads 418790 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 135789 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 623788 A Cohort and Empirical Based Multivariate Mortality Model
Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong
Abstract:
This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management
Procedia PDF Downloads 55787 Effectiveness of Adrenal Venous Sampling in the Management of Primary Aldosteronism: Single Centered Cohort Study at a Tertiary Care Hospital in Sri Lanka
Authors: Balasooriya B. M. C. M., Sujeeva N., Thowfeek Z., Siddiqa Omo, Liyanagunawardana J. E., Jayawardana Saiu, Manathunga S. S., Katulanda G. W.
Abstract:
Introduction and objectives: Adrenal venous sampling (AVS) is the gold standard to discriminate unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and only performed in a limited number of centers worldwide. To the best of our knowledge, Except for one study conducted in India, no other research studies on this area have been conducted in South Asia. This study aimed to evaluate the effectiveness of AVS in the management of primary aldosteronism. Methods: A total of 32 patients who underwent AVS at the National Hospital of Sri Lanka from April 2021 to April 2023 were enrolled. Demographic, clinical and laboratory data were obtained retrospectively. A procedure was considered successful when adequate cannulation of both adrenal veins was demonstrated. Cortisol gradient across the adrenal vein (AV) and the peripheral vein was used to establish the success of venous cannulation. Lateralization was determined by the aldosterone gradient between the two sides. Continuous and categorical variables were summarized with mean, SD, and proportions, respectively. The mean and standard deviation of the contralateral suppression index (CSI) were estimated with an intercept-only Bayesian inference model. Results: Of the 32 patients, the average age was 52.47 +26.14 and 19 (59.4%) were males. Both AVs were successfully cannulated in 12 (37.5%). Among them, lateralization was demonstrated in 11(91.7%), and one was diagnosed as a bilateral disease. There were no total failures. Right AV cannulation was unsuccessful in 18 (56.25%), of which lateralization was demonstrated in 9 (50%), and others were inconclusive. Left AV cannulation was unsuccessful only in 2 (6.25%); one was lateralized, and the other remained inconclusive. The estimated mean of the CSI was 0.33 (89% credible interval 0.11-0.86). Seven patients underwent unilateral adrenalectomy and demonstrated significant improvement in blood pressure during follow-up. Two patients await surgery. Others were treated medically. Conclusions: Despite failure due to procedural difficulties, AVS remained useful in the management of patients with PA. Moreover, the success of the procedure needs experienced hands and advanced equipment to achieve optimal outcomes in PA.Keywords: adrenal venous sampling, lateralization, contralateral suppression index, primary aldosteronism
Procedia PDF Downloads 65786 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception
Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova
Abstract:
The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.Keywords: bistability, brain, noise, perception, stochastic processes
Procedia PDF Downloads 445785 Smaa-Gaia: A Complementary Tool of the Smaa-Promethee Method
Authors: Y. de Smet, J. Hubinont
Abstract:
PROMETHEE and GAIA are well-known Multiple Criteria Decision Aid methods. Given an evaluation table and preference parameters they allow to rank the alternatives, to visualize the problem, to perform sensitivity and robustness analysis, etc. Unfortunately, it is often hard for the Decision Maker (DM) to estimate the precise values of these parameters. Therefore an alternative option is to give ranges of potential values in order to apply Stochastic Multicriteria Acceptability Analysis. This has been recently studied in the context of the SMAA-PROMETHEE method. The aim of this contribution is to propose an SMAA extension of GAIA. We show how this tool can be useful and provide complementary information to SMAA-PROMETHEE. This is illustrated on a pedagogical example.Keywords: multiple criteria decision making, PROMETHEE, GAIA, SMAA
Procedia PDF Downloads 429784 Spectral Clustering from the Discrepancy View and Generalized Quasirandomness
Authors: Marianna Bolla
Abstract:
The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering.Keywords: generalized random graphs, multiway discrepancy, normalized modularity spectra, spectral clustering
Procedia PDF Downloads 197783 Case Report: Cap Polyposis with Advanced Pelvic Floor Dysfunction: Stronger Evidence of Mechanical Prolapse-related Pathology
Authors: Adrian Sebastian, Chris Gillespie
Abstract:
We describe a case of diffuse rectal involvement with cap polyposis, manifesting with a protein-losing colopathy and occurring in the setting of advanced mechanical pelvic floor dysfunction. A 59-year-old male with a 5-year history of persistent excessive flatulence, defecatory difficulties, and diarrhea. He had extensive cap polyposis of the entire rectum endoscopically. His symptoms progressed to severe fecal incontinence with mucus leakage, pelvic pain, weight loss, and hypoalbuminemia. Clinical examination exhibited severe perineal descent, a large rectocele, poor anal squeeze, and a poor defecatory technique. After a trial of nonoperative therapies addressing his defecatory dysfunction, and Helicobacter pylori eradication, surgical resection was offered due to severe symptoms with ongoing incontinence and protein loss with no other reasonable options. A robotic abdominoperineal resection with a permanent colostomy was performed, followed by an uncomplicated recovery. Our observation of coexisting mechanical pelvic floor changes in this patient lends weight to the concept of a prolapse-related phenomenon in the pathophysiology of this rare condition.Keywords: cap polyposis, pelvic dysfunction, fecal incontinence, case report
Procedia PDF Downloads 79