Search results for: steel truss bridge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2467

Search results for: steel truss bridge

2017 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 329
2016 The Effect of Surface Roughness on the Fatigue Life of SCM440 Steel

Authors: C. Han, H. Kim, S. Park

Abstract:

The purpose of the present study is to analyze the effect of surface roughness on fatigue life of SCM440 steel. Two groups of specimens were made from SCM440 steel with and without surface polished after forging process and resulted in different values of surface roughness. The difference of the surface roughness between two groups was clearly distinguished even to the naked eye. Surface roughness of both groups of the specimens was quantitatively measured by a roughness measuring device, Talysurf series2 (Taylor-Hobson Co., USA). Average roughness (Ra) and maximum roughness depth (Rmax) values were obtained by scanning 45 mm with a speed of 0.25 mm/s. Fatigue tests were conducted using a three-point bending method with a cyclic sinusoidal profile of 5 Hz, stress ratio of R = 0.1 and reference life for fatigue limit of 1 × 106 cycles. Ra and Rmax without surface polished were 10.497 ± 1.721 μm and 87.936 ± 16.210 μm, respectively while those values with surface polished were much smaller (ongoing measurements). Fatigue lives of the surface-polished specimens achieved approximately 1 × 106 cycles under the maximum stress of 900 MPa, which was 10 times longer than those of the surface-untreated specimens with an average roughness of 10.082 μm. The results showed that an increase in surface roughness values led to a decrease in fatigue lives.

Keywords: surface roughness, fatigue test, fatigue life, SCM440 steel

Procedia PDF Downloads 327
2015 An Experimental Study on the Effect of Heat Input on the Weld Efficiency of TIG-MIG Hybrid Welding of Type-304 Austenitic Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

Welding is described as the process of joining metals so that bonding can be created as a result of inter-atomic penetration. This study investigated the influence of heat input on the efficiency of the welded joints of 304 stainless steel. Three welds joint were made from two similar 304 stainless steel plates of thickness 6 mm. The tensile results obtained showed that the maximum average tensile strength of 672 MPa is possessed by the sample A1 with low heat input. It was discovered that the tensile strength, % elongation and weld joint efficiency decreased with the increase in heat input into the weld. The average % elongation for the entire samples ranged from 28.4% to 36.5%. Sample A1 had the highest joint efficiency of 94.5%. However, the optimum welding current of 190 for TIG- MIG hybrid welding of type-304 austenite stainless steel can be recommended for advanced technological applications such as aircraft manufacturing, nuclear industry, automobile industry, and processing industry.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 179
2014 Modelling the Growth of σ-Phase in AISI 347H FG Steel

Authors: Yohanes Chekol Malede

Abstract:

σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained.

Keywords: AISI 347H FG austenitic steel, CALPHAD, sigma phase, microstructure evolution

Procedia PDF Downloads 129
2013 The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study

Authors: Fatimah Al-Hayazi, Ehteram. A. Noor, Aisha H. Moubaraki

Abstract:

The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained.

Keywords: corrosion, inhibition of steel, hydrochloric acid, thermodynamic study

Procedia PDF Downloads 79
2012 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: cyclic loading, delayed wire rope bracing, ductile moment frame, energy absorption, hysteresis curve

Procedia PDF Downloads 266
2011 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 334
2010 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: bridge, deterioration mechanism, lifecycle, performance indicator

Procedia PDF Downloads 86
2009 Design, Modification and Structural Analysis of Bicycle Sprocket Using ANSYS

Authors: Roman Kalvin, Saba Arif, Anam Nadeem, Burhan Ali Ghumman, Juntakan Taweekun

Abstract:

Bicycles are important parts of the transportation industry. In the current world, use of sprocket is very high on bicycles these days. Sprocket and chains are important parts of the transmission of power in the bicycle. However, transmission of power is highly dependent on sprocket design. In conventional bicycles, sprockets are made up of mild steel which undergoes wear and tears with the passage of time due to high pressures applied on it. In the current research, a new sprocket is designed by changing its structure and material to carbon fiber from mild steel. The existing sprocket of a bicycle is compared with the new and modified sprocket design. However, new design has structural and material changes as well. According to the results, in carbon fiber, sprocket deformation is 0.091 mm while sprocket stress value is 371.13N/mm². Also, comparison based analysis is done by physical testing and software analysis. There is 8.1% variation in software and experimental results of steel. Additionally, the difference between both methods comes 8 to 9%. This improved design can be used in future for more durability and long run timings for bicycles.

Keywords: sprocket, mild steel, drafting, stress, deformation

Procedia PDF Downloads 231
2008 Uniform and Controlled Cooling of a Steel Block by Multiple Jet Impingement and Airflow

Authors: E. K. K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

During the cooling of hot metals by the circulation of water in canals formed by boring holes in the metal, the rapid phase change of the water due to the high initial temperature of the metal leads to a non homogenous distribution of the phases within the canals. The liquid phase dominates towards the entrance of the canal while the gaseous phase dominates towards the exit. As a result of the different thermal properties of both phases, the metal is not uniformly cooled. This poses a problem during the cooling of moulds, where a uniform temperature distribution is needed in order to ensure the integrity of the part being formed. In this study, the simultaneous use of multiple water jets and an airflow for the uniform and controlled cooling of a steel block is investigated. A circular hole is bored at the centre of the steel block along its length and a perforated steel pipe is inserted along the central axis of the hole. Water jets that impact the internal surface of the steel block are generated from the perforations in the steel pipe when the water within it is put under pressure. These jets are oriented in the opposite direction to that of gravity. An intermittent airflow is imposed in the annular space between the steel pipe and the surface of hole bored in the steel block. The evolution of the temperature with respect to time of the external surface of the block is measured with the help of thermocouples and an infrared camera. Due to the high initial temperature of the steel block (350 °C), the water changes phase when it impacts the internal surface of the block. This leads to high heat fluxes. The strategy used to control the cooling speed of the block is the intermittent impingement of its internal surface by the jets. The intervals of impingement and of non impingement are varied in order to achieve the desired result. An airflow is used during the non impingement periods as an additional regulator of the cooling speed and to improve the temperature homogeneity of the impinged surface. After testing different jet positions, jet speeds and impingement intervals, it’s observed that the external surface of the steel block has a uniform temperature distribution along its length. However, the temperature distribution along its width isn’t uniform with the maximum temperature difference being between the centre of the block and its edge. Changing the positions of the jets has no significant effect on the temperature distribution on the external surface of the steel block. It’s also observed that reducing the jet impingement interval and increasing the non impingement interval slows down the cooling of the block and improves upon the temperature homogeneity of its external surface while increasing the duration of jet impingement speeds up the cooling process.

Keywords: cooling speed, homogenous cooling, jet impingement, phase change

Procedia PDF Downloads 110
2007 The Golden Bridge for Better Farmers Life

Authors: Giga Rahmah An-Nafisah, Lailatus Syifa Kamilah

Abstract:

Agriculture today, especially in Indonesia have globally improved. Since the election of the new president, who in the program of work priority the food self-sufficiency. Many ways and attempts have been planned carefully. All this is done to maximize agricultural production for the future. But if we look from another side, there is something missing. Yes! Improvement of life safety of the farmers, useless we fix all agricultural processing systems to maximize agricultural output, but the Hero of agriculture itself it does not change towards a better life. Yes, broker or middleman system agriculture results. Broker system or middleman this is the real problem facing farmers for their welfare. How come? As much as agriculture result, but if farmers were sell into middlemen with very low prices, then there will be no progress for their welfare. Broker system who do the actual middlemen should not happen in the current agricultural system, because the agriculture condition currently being concern, they would still be able to reap a profit as much as possible, no matter how miserable farmers manage the farm and currently face import competition this cannot be avoided anymore. This phenomenon is already visible plain sight all, who see it. Why? Because farmers those who fell victim cannot do anything to change this system. It is true, if only these middlemen who want to receive it for the sale of agricultural products, or arguably the only system that is the bridge realtor economic life of the farmers. The problem is that we should strive for the welfare of the heroes of our food. A golden bridge that could save them that, are the government. Why? Because the government can more easily with the powers to stop this broker system compared to other parties. The government supposed to be a bridge connecting the farmers with consumers or the people themselves. Yes, with improved broker system becomes: buy agricultural produce with highest prices to farmers and selling of agricultural products with lowest price to the consumer or the people themselves. And then the next question about the fate of middlemen? The system indirectly realtor is like system corruption. Why? Because the definition of corruption is an activity that is detrimental to the victim without being noticed by anyone continue to enrich himself and his victim's life miserable. Government may transfer performance of the middlemen into the idea of a new bridge that is done by the government itself. The government could lift them into this new bridge system employs them to remain a distributor of agricultural products themselves, but under the new policy made by the government to keep improving the welfare of farmers. This idea is made is not going to have much effect would improve the welfare of farmers, but most/least this idea will bring around many people for helping conscience farmers to the government, through the daily chatter, as well as celebrity gossip can quickly know too many people.

Keywords: broker system, farmers live, government, agricultural economics

Procedia PDF Downloads 272
2006 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model

Authors: Ameen Alawneh

Abstract:

The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.

Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution

Procedia PDF Downloads 428
2005 Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete

Authors: Isyaka Abdulkadir, Egbe Ngu-Ntui Ogork

Abstract:

This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control.

Keywords: compressive strength, high performance concrete, scrap tyre steel fiber, splitting tensile strength

Procedia PDF Downloads 186
2004 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine

Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa

Abstract:

During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.

Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower

Procedia PDF Downloads 199
2003 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 272
2002 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 74
2001 Research for Hollow Reinforced Concrete Bridge Piers in Korea

Authors: Ho Young Kim, Jae Hoon Lee, Do Kyu Hwang, Im Jong Kwahk, Tae Hoon Kim, Seung Hoon Lee

Abstract:

Hollow section for bridge columns has some advantages. However, current seismic design codes do not provide design regulations for hollow bridge piers. There have been many experimental studied for hollow reinforced concrete piers in the world. But, Study for hollow section for bridge piers in Korea has been begun with approximately 2000s. There has been conducted experimental study for hollow piers of flexural controlled sections by Yeungnam University, Sung kyunkwan University, Korea Expressway Corporation in 2009. This study concluded that flexural controlled sections for hollow piers showed the similar behavior to solid sections. And there have been conducted experimental study for hollow piers of compression controlled sections by Yeungnam University, Korea Institute of Construction Technology in 2012. This study concluded that compression controlled sections for hollow piers showed compression fracture of concrete in inside wall face. Samsung C&T Engineering & Construction Group has been conducted study with Yeungnam University for reduce the quantity of reinforcement details about hollow piers. Reduce the quantity of reinforcement details are triangular cross tie. This study concluded that triangular reinforcement details showed the similar behavior as compared with existing reinforcement details.

Keywords: hollow pier, flexural controlled section, compression controlled section, reduce the quantity of reinforcement, details

Procedia PDF Downloads 393
2000 Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions

Authors: Ashish Kumar Singh, Preeti Tiwari, Shubham Srivastava, Rajiv Prakash, Herman Terryn, Gopal Ji

Abstract:

Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm.

Keywords: mild steel, Azo dye, EIS, Langmuir isotherm

Procedia PDF Downloads 349
1999 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 113
1998 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method

Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy

Abstract:

The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.

Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method

Procedia PDF Downloads 111
1997 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √("3"), nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Keywords: circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis

Procedia PDF Downloads 343
1996 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member

Authors: K. Raghu, Altafhusen P. Pinjar

Abstract:

Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.

Keywords: direct strength, cold formed, perforations, CUFSM

Procedia PDF Downloads 363
1995 Electrochemical Coagulation of Synthetic Textile Dye Wastewater

Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka

Abstract:

Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.

Keywords: electrochemical coagulation, mild steel, colour, environmental engineering

Procedia PDF Downloads 286
1994 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 342
1993 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel

Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar

Abstract:

High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.

Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation

Procedia PDF Downloads 329
1992 Study of Microstructure of Weldment Obtained by Submerged Arc Welding (SAW) on IS 2062 Grade B Mild Steel Plate at Zero Degree Celsius

Authors: Ajay Biswas, Swapan Bhaumik, Abhijit Bhowmik

Abstract:

Present experiment has been carried out to study the microstructure of weldment obtained by submerged arc welding on mild steel plate at zero degree Celsius. To study this, bead on plate welding is done by submerged arc welding on the sample plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring the plate temperature at zero degree Celsius. Sixteen numbers of such samples are welded by varying the most influencing parameters viz. travel speed, voltage, wire feed rate and electrode stick-out at four different levels. Taguchi’s design of experiment is applied by selecting Taguchi's L16 orthogonal array to restrict the number of experimental runs. Cross sectioned samples are polished and etched to view the weldment. Finally, different zone of the weldment is observed by optical microscope. From the type of microstructure of weldment it is concluded that submerged arc welding is feasible at zero degree Celsius on mild steel plate.

Keywords: Submerged Arc Welding, zero degree Celsius, Taguchi’s design of experiment, microstructure of weldment

Procedia PDF Downloads 422
1991 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 steel, orthogonal array, optimization, surface roughness, Taguchi methodology

Procedia PDF Downloads 524
1990 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarisation

Procedia PDF Downloads 366
1989 Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry

Authors: Mustafa Col, Funda Gul Koc, Merve Yangaz, Eylem Subasi, Can Akbasoglu

Abstract:

G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel.

Keywords: G38NiCrMo8-4-4 steel, boron, heat treatment, microstructure, wear, mechanical properties

Procedia PDF Downloads 173
1988 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction

Authors: Huijuan Liu, Fukun Li, Hao Yuan

Abstract:

The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.

Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration

Procedia PDF Downloads 120