Search results for: statistical energy analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34018

Search results for: statistical energy analysis

33568 Independent Village Planning Based Eco Village and Save Energy in Region of Maritime Tourism

Authors: Muhamad Rasyid Angkotasan

Abstract:

Eco-village is an ecosystem where the countryside or urban communities that are inside trying to integrate the social environment with low impact way of life to achieve this, they integrate the various aspects of ecological design, agriculture permanent, ecological building and the alternative energy. Eco-village in question is eco-village conducted on of marine tourism areas, where natural resources are very good, without ignoring the global issue of climate change. Desperately needed a source of energy, which can support the fulfillment of energy needs in a sustainable. Fulfillment of energy sources that offer is the use or application of environmentally friendly technologies of usage is still very low in Indonesia, the technology namely the Ocean Thermal Energy Conversion (OTEC), OTEC is expected to be a source of the alternative energy, which can support the goal of eco-village of the region's of marine tourism.

Keywords: eco village, saving energy, ocean thermal energy conversion, environmental engineering

Procedia PDF Downloads 437
33567 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 325
33566 GIS-Driven Analysis for Locating Suitable Areas for Renewable Energy

Authors: Saleh Nabiyev

Abstract:

Renewable energy is becoming increasingly important in today's world due to its significant impact on the green economy, ecology, environment, and climate change. Renewable energy sources, such as solar and wind, are clean and sustainable, making them an ideal solution to reduce carbon emissions and mitigate the effects of climate change. The Karabakh region is located in the South Caucasus and covers an area of approximately 11,500 km². The region has a mountainous terrain, which can affect the availability of wind and solar resources. The Karabakh region has significant wind power potential, particularly in its mountainous areas where wind speeds are typically higher. According to a study conducted by the European Commission Joint Research Centre, the average wind speed in the Karabakh region is between 4 and 6 meters per second (m/s) at a height of 50 meters above ground level (AGL). However, wind speeds can be higher in some areas, reaching up to 10 m/s in some mountainous areas. The region also has significant solar power potential, with an average of 2,000 to 2,200 hours of sunshine per year. The region's high altitude and clear skies make it particularly suitable for the development of solar power projects. In this research, the application of satellite images, solar radiation, wind speed and direction, as well as various other materials to determine suitable areas for alternative energy sources, is investigated. The methodology for selecting suitable locations for solar and wind energy consists of four main parts: identification of factors, evaluation of factors, data preparation, and application of suitability analysis. At the end of the research, the territory of the Kalbajar and Lachin districts is suitable for wind energy. The southern plain part of Karabakh is highly evaluated in terms of solar energy potential, especially Jabrayil district. Generally, outcomes taken from this research are essential data for increasing of rational using natural resources, as well as combating climate change.

Keywords: GIS, remote sensing, suitability analysis, solar energy, wind energy

Procedia PDF Downloads 12
33565 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course

Authors: Lucia Ceccherini Nelli, Alessandra Donato

Abstract:

The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.

Keywords: expert in energy, energy auditing, public buildings, thermal analysis

Procedia PDF Downloads 166
33564 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction

Procedia PDF Downloads 192
33563 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia

Authors: Habib Alshuwaikhat, Nahid Hossain

Abstract:

Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.

Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation

Procedia PDF Downloads 478
33562 Readiness Assessment to Implement Net-Zero Energy Building Program of Government Buildings in the Philippines

Authors: Patrick T. Aquino, Jimwel B. Balunday, Cephas Olivier V. Cabatit, Mary Grace Q. Razonable

Abstract:

In 2023, the Philippine Department of Energy (PDOE) published the National Energy Efficiency and Conservation Plan (NEECP) and Roadmap 2023-2050 to be the basis of a comprehensive program for the efficient supply and economical use of energy. The building sector, as one of the most energy-intensive sectors, shall conform to the energy-conserving design to reduce the use of energy. The concept of Net-Zero Energy Building (NZEB), and its definitions promote to improve energy efficiency of the buildings. The PDOE partnered with Meralco Power Academy to survey and conduct focus group discussions to establish the readiness into NZE-aspiring buildings of government entities. This paper outlines important NZEB principles, best practices from other countries, issues and gaps relating to energy management program, and the recommendations on the development of a framework for NZEB under government building in the Philippines. Results revealed the limitation on specific data to establish a baseline building energy efficiency performance index and significant energy uses; the need to update the Guidelines for Energy Conservation Design of Buildings, including NZEB definition and requirements; appropriate enabling infrastructures and programs to transition government buildings into NZE-aspiring buildings to Nearly Zero Energy Buildings by 2050.

Keywords: NZEB, energy efficiency, buildings, Philippines

Procedia PDF Downloads 65
33561 Development Strategies for Building Smart Cities: The Case of Kalampaka, Greece

Authors: Christos Stamopoulos

Abstract:

Nowadays, the technological evolution has brought changes and new requirements not only on human’s life but also on the environment in which they live. Cities have begun to be organized in new ways which comply with contemporary living standards. The aim of this paper was to present the characteristics and to introduce good construction strategies of smart cities around the world. Also, a case study of the city of Kalampaka and its residents was surveyed. More specifically, residents’ knowledge about smart cities and their opinion for future progress was examined. Statistical analysis showed that residents’ knowledge about smart cities was fairly good (48% knew the phrase 'smart city'). However, respondents believe that the appearance of the city of Kalampaka needs improvement in many areas (the 75% are disappointed with the current appearance of the city). Furthermore, regression analysis showed that the value of the environmental sustainability is greatly influenced by the energy saving, as well as, innovation has an impact on the level of quality of life, while older people seem satisfied with administration’s efforts for development.

Keywords: development, economy, environment, governance, quality of life, smart city

Procedia PDF Downloads 319
33560 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 720
33559 Multi-Elemental Analysis Using Inductively Coupled Plasma Mass Spectrometry for the Geographical Origin Discrimination of Greek Giant Beans “Gigantes Elefantes”

Authors: Eleni C. Mazarakioti, Anastasios Zotos, Anna-Akrivi Thomatou, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

“Gigantes Elefantes” is a particularly dynamic crop of giant beans cultivated in western Macedonia (Greece). This variety of large beans growing in this area and specifically in the regions of Prespes and Kastoria is a protected designation of origin (PDO) species with high nutritional quality. Mislabeling of geographical origin and blending with unidentified samples are common fraudulent practices in Greek food market with financial and possible health consequences. In the last decades, multi-elemental composition analysis has been used in identifying the geographical origin of foods and agricultural products. In an attempt to discriminate the authenticity of Greek beans, multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, Zr) was performed by inductively coupled plasma mass spectrometry (ICP-MS) on 320 samples of beans, originated from Greece (Prespes and Kastoria), China and Poland. All samples were collected during the autumn of 2021. The obtained data were analysed by principal component analysis (PCA), an unsupervised statistical method, which allows for to reduce of the dimensionality of the enormous datasets. Statistical analysis revealed a clear separation of beans that had been cultivated in Greece compared with those from China and Poland. An adequate discrimination of geographical origin between bean samples originating from the two Greece regions, Prespes and Kastoria, was also evident. Our results suggest that multi-elemental analysis combined with the appropriate multivariate statistical method could be a useful tool for bean’s geographical authentication. Acknowledgment: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, multi-elemental analysis, beans, ICP-MS, PCA

Procedia PDF Downloads 52
33558 An Investigation into the Correlation between Music Preferences and Emotional Regulation in Military Cadets

Authors: Chiu-Pin Wei

Abstract:

This research aims to explore the impact of music preferences on the emotional well-being of military academy students, recognizing the potential long-term implications for their high-stress careers post-graduation. Given the significance of positive emotion regulation in military personnel, this study focuses on understanding the types of music preferred by military cadets and analyzing how these preferences correlate with their emotional states. The study employs a quantitative approach, utilizing the Music Category Scale and Mood Scale to collect data. Statistical tools, such as Statistical Product and Service Solutions (SPSS), are employed for inferential analysis, including t-tests for emotional responses to instrumental and vocal music, one-way variance analysis for different demographic factors (grades, genders, and music listening frequencies), and Pearson's correlation to examine the relationship between music preferences and moods of military students.

Keywords: music preference, emotional regulation, military academic students, SPASS

Procedia PDF Downloads 47
33557 Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study

Authors: Amin H. Almasria, Rajai Z. Alrousanb, Al-Harith Manasrah

Abstract:

The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives.

Keywords: finite element method, dynamic impact, pedestrian bridges, strain energy, collapse failure

Procedia PDF Downloads 601
33556 Impact of Building Orientation on Energy Performance of Buildings in Kabul, Afghanistan

Authors: Mustafa Karimi, Chikamoto Tomoyuki

Abstract:

The building sector consumes 36% of total global energy used, whereas only residential buildings are responsible for 22% of that. In residential buildings, energy used for space heating and cooling represents the majority part of the total energy consumption. Although Afghanistan is amongst the lowest in energy usage globally, residential buildings’ energy consumption has caused serious environmental issues, especially in the capital city, Kabul. After decades of war in Afghanistan, redevelopment of the built environment started from scratch in the past years; therefore, to create sustainable urban areas, it is critical to find the most energy-efficient design parameters for buildings that will last for decades. This study aims to assess the impact of building orientation on the energy performance of buildings in Kabul. It is found that the optimal orientation for buildings in Kabul is South and South-southeast, while West-northwest and Northeast orientations are the worst in terms of energy performance. The difference in the total energy consumption between the best and the worst orientation is 17.5%.

Keywords: building orientation, energy consumption, residential buildings, Kabul, environmental issues

Procedia PDF Downloads 110
33555 Wind Speed Data Analysis in Colombia in 2013 and 2015

Authors: Harold P. Villota, Alejandro Osorio B.

Abstract:

The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.

Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation

Procedia PDF Downloads 142
33554 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting

Procedia PDF Downloads 421
33553 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 47
33552 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 116
33551 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.

Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis

Procedia PDF Downloads 603
33550 Diversity and Equality in Four Finnish and Italian Energy Companies' Open Access Material

Authors: Elisa Bertagna

Abstract:

A frame analysis of the work done by various energy multinational companies concerning diversity issues and gender equality is presented. Documents of four multinational companies - two from Finland and two from Italy - have been studied. The array of companies’ documents includes data from their websites, policies and so on. The Finnish and Italian contexts have been chosen as a sample of North and South Europe, of 'advanced' and 'less advanced'. The aim of the analysis is to understand if and how human resource and diversity management in Finnish and Italian multinational energy companies communicate their activity towards the employees. Attention is given on how employees are reacting in their role and on the consequences of its social positioning. The findings of this essay are crucially important. They show how the companies in object tend to focus on the HR and DM positive actions towards female employees’ struggles since the industry is characterized by multinationals with male-dominated employees. In this way, other categories, which are also depicted as sensitive such as young and elderly people or foreigners, do not receive the same amount of attention. Consequently, power hierarchies can be found: 'women' as a social category are given more importance and space in the companies’ data than others. Consequently, the present work analysis reflects on possible struggles that such companies might be facing concerning gender biases and further diverse issues.

Keywords: energy, diversity, gender, multinationals, power hierarchies

Procedia PDF Downloads 124
33549 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 84
33548 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump

Authors: Merieleen Engtipi

Abstract:

India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.

Keywords: energy demand, energy cooperation, fossil fuels, technology transfer

Procedia PDF Downloads 231
33547 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 254
33546 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 29
33545 Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus

Authors: Amitabh Das, Yash Jain, Mohammad Rafiq B. Agrewale, K. C. Vora

Abstract:

Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.

Keywords: wheel-housing, CFD simulation, drag coefficient, energy consumption

Procedia PDF Downloads 166
33544 Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon

Authors: Yathreb Sabsaby

Abstract:

Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building.

Keywords: energy-efficiency, existing building, multifamily residential building, retrofit

Procedia PDF Downloads 434
33543 Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone

Authors: Yuang Guo, Dewancker Bart

Abstract:

The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones.

Keywords: energy consumption, design parameters, indoor thermal comfort, simulation study, severe cold climate zone

Procedia PDF Downloads 134
33542 Impact of the Energy Transition on Security of Supply - A Case Study of Vietnam Power System in 2030

Authors: Phuong Nguyen, Trung Tran

Abstract:

Along with the global ongoing energy transition, Vietnam has indicated a strong commitment in the last COP events on the zero-carbon emission target. However, it is a real challenge for the nation to replace fossil-fired power plants by a significant amount of renewable energy sources (RES) while maintaining security of supply. The unpredictability and variability of RES would cause technical issues for supply-demand balancing, network congestions, system balancing, among others. It is crucial to take these into account while planning the future grid infrastructure. This study will address both generation and transmission adequacy and reveal a comprehensive analysis about the impact of ongoing energy transition on the development of Vietnam power system in 2030. This will provide insight for creating an secure, stable, and affordable pathway for the country in upcoming years.

Keywords: generation adequacy, transmission adequacy, security of supply, energy transition

Procedia PDF Downloads 64
33541 Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades

Authors: Ennouri Triki, Toan Vu-Khanh

Abstract:

Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero.

Keywords: elastomer, energy, fracture, friction, pointed blades

Procedia PDF Downloads 281
33540 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior

Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns

Abstract:

A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.

Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation

Procedia PDF Downloads 168
33539 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 456