Search results for: network security techniques
12751 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 22012750 Packet Analysis in Network Forensics: Insights, Tools, and Case Study
Authors: Dalal Nasser Fathi, Amal Saud Al-Mutairi, Mada Hamed Al-Towairqi, Enas Fawzi Khairallah
Abstract:
Network forensics is essential for investigating cyber incidents and detecting malicious activities by analyzing network traffic, with a focus on packet and protocol data. This process involves capturing, filtering, and examining network data to identify patterns and signs of attacks. Packet analysis, a core technique in this field, provides insights into the origins of data, the protocols used, and any suspicious payloads, which aids in detecting malicious activity. This paper explores network forensics, providing guidance for the analyst on what to look for and identifying attack sites guided by the seven layers of the OSI model. Additionally, it explains the most commonly used tools in network forensics and demonstrates a practical example using Wireshark.Keywords: network forensic, packet analysis, Wireshark tools, forensic investigation, digital evidence
Procedia PDF Downloads 1712749 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 16412748 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: clustering coefficient, criminology, generalized, regular network d-dimensional
Procedia PDF Downloads 41812747 Security Design of Root of Trust Based on RISC-V
Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li
Abstract:
Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Design a reliable Root of Trust and guarantee its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V Root of Trust at the hardware level. To effectively safeguard the security of the Root of Trust, researches on security safeguard technology on the Root of Trust have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the Root of Trust’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the Root of Trust’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.Keywords: root of trust, secure boot, memory protection, hardware security
Procedia PDF Downloads 22812746 Retaining Users in a Commercially-Supported Social Network
Authors: Sasiphan Nitayaprapha
Abstract:
A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed.Keywords: social network, information adoption, information systems continuance, web usability, user satisfaction
Procedia PDF Downloads 32012745 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain
Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik
Abstract:
The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.Keywords: distribution strategy, mathematical model, network design, supply chain management
Procedia PDF Downloads 30012744 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 23612743 Foreign Policy and National Security Dilemma: Examining Nigerian Experience
Authors: Shuaibu Umar Abdul
Abstract:
The essence of any state as well as government is to ensure and advance the security of lives and property of its citizens. As a result, providing security in all spheres ranging from safeguarding the territorial integrity, security of lives and property of the citizens as well as economic emancipation have constitute the core objectives cum national interest of virtually all country’s foreign policy in the world. In view of this imperative above, Nigeria has enshrined in the early part of her 1999 constitution as amended, as its duty and responsibility as a state, to ensure security of lives and property of its citizens. Yet, it does not make any significant shift as it relates to the country’s fundamental security needs as exemplified by the current enormous security challenges that reduced the country’s fortune to the background in all ramifications. The study chooses realist paradigm as theoretical underpinning which emphasizes that exigency of the moment should always take priority in the pursuit of foreign policy. The study is historical, descriptive and narrative in method and character. Data for the study was sourced from secondary sources and analysed via content analysis. The study found out that it is lack of political will on the side of the government to guarantee a just and egalitarian society that will be of benefit to all citizens. This could be more appreciated when looking at the gaps between the theory in Nigerian foreign policy and the practice as exemplified by the action or inaction of the government to ensure security in the state. On this account, the study recommends that until the leaderships in Nigerian foreign policy recognized the need for political will and respect for constitutionalism to ensure security of its citizens and territory, otherwise achieving great Nigeria will remain an illusion.Keywords: foreign policy, nation, national security, Nigeria, security
Procedia PDF Downloads 52012742 Food Security of Migrants in a Regional Area of Australia: A Qualitative Study
Authors: Joanne Sin Wei Yeoh, Quynh Lê, Rosa McManamey
Abstract:
Food security indicates the ability of individuals, households and communities to acquire food that is healthy, sustainable, affordable, appropriate and accessible. Despite Australia’s current ability to produce enough food to feed a population larger than its current population, there has been substantial evidence over the last decades to demonstrate many Australians struggle to feed themselves, including those from a cultural and linguistically diverse (CALD) background. The study aimed to investigate migrants’ perceptions and experiences on food security in Tasmania. Semi-structured interviews were conducted with 33 migrants residing in North, South and North West Tasmania, who were recruited through purposive sampling. Thematic analysis was employed to analyse the interview data. Four main themes were identified from the interview data: (1) Understanding of food security; (2) Experiences with the food security in Tasmania; (3) Factors that influence migrants’ food security in Tasmania; and (4) Acculturation strategies. Various sub-themes have emerged under each of these four major themes. Though the findings indicate participants are satisfied with their current food security in Tasmania, they still encounter some challenges in food availability, accessibility, and affordability in Tasmania. Factors that influence migrants’ food security were educational background, language barrier, socioeconomic status, geographical isolation, and cultural background. By using different acculturation strategies, migrants managed to adapt to the new food culture. In addition, social and cultural capitals were also treated as vital roles in improving migrants’ food security. The findings indicate migrants residing in Tasmania face different challenges on food security. They use different strategies for food security while acculturating into a new environment. The findings may provide useful information for migrants in Australia and various private organisations or relevant government departments that address food security for migrants.Keywords: experiences, food security, migrants, perceptions
Procedia PDF Downloads 42812741 Can Empowering Women Farmers Reduce Household Food Insecurity? Evidence from Malawi
Authors: Christopher Manyamba
Abstract:
Women in Malawi produce perform between 50-70 percent of all agricultural tasks and yet the majority remain food insecure. The aim of his paper is to build on existing mixed evidence that indicates that empowering women in agriculture is conducive to improving food security. The WEAI is used to provide evidence on the relationship between women’s empowerment in agriculture and household food security. A multinomial logistic regression is applied to the Women Empowerment in Agriculture Index (WEAI) components and the Household Hunger Scale. The overall results show that the WEAI can be used to determine household food insecurity; however it has to be contextually adapted. Assets ownership, credit, group membership and leisure time are positively associated with food security. Contrary to other literature, empowerment in having control and decisions on income indicate negative association with household food security. These results could potentially better inform public, private and civil society stakeholders’ dialogues in creating the most effective and sustainable interventions to help women attain long-term food security.Keywords: food security, gender, empowerment, agriculture index, framework for African food security, household hunger scale
Procedia PDF Downloads 37312740 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model
Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee
Abstract:
In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.Keywords: automotive security, HEAVENS, car hacking, security model, information security
Procedia PDF Downloads 37012739 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 44912738 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network
Authors: Abdullah Al Mamun, Tarek R. Sheltami
Abstract:
Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN
Procedia PDF Downloads 33212737 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups
Authors: John Hardy
Abstract:
Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism
Procedia PDF Downloads 29412736 Establishment of Bit Selective Mode Storage Covert Channel in VANETs
Authors: Amarpreet Singh, Kimi Manchanda
Abstract:
Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator.Keywords: covert mode, normal mode, VANET, OBU, on-board unit
Procedia PDF Downloads 37012735 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17312734 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 43912733 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service
Authors: Mabrouka Algherinai, Fatma Karkouri
Abstract:
Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.Keywords: SMS, RSA, McEliece, RABIN
Procedia PDF Downloads 16712732 Human Development as an Integral Part of Human Security within the Responsibility to Rebuild
Authors: Themistoklis Tzimas
Abstract:
The proposed paper focuses on a triangular relationship, between human security, human development and responsibility to rebuild. This relationship constitutes the innovative contribution to the debate about human security. Human security constitutes a generic and legally binding notion, which orientates from an integrated approach the UN Charter principles and of the collective security system. Such an approach brings at the forefront of international law and of international relations not only states but non- state actors as well. Several doctrines attempt to implement the fore-mentioned approach among which the Responsibility to Protect- hereinafter R2P- doctrine and its aspect of Responsibility to Rebuild- hereinafter R2R. In this sense, R2P in general and R2R are supposed to be guided by human security imperatives. Human security because of its human- centered approach encompasses as an integral part of it, human development. Human development constitutes part of the backbone of human security, since it deals with the social and economic root- causes of the threats, which human security attempts to confront. In this sense, doctrines which orientate from human security, such as R2P and its R2R aspect should also take into account human development imperatives, in order to improve their efficiency. On the contrary though, R2R is more often linked with market- orientated policies, which are often imposed under transitional authorities, regardless of local needs. The implementation of such policies can be identified as a cause for striking failures in the framework of R2R. In addition it is a misinterpretation of the essence of human security and subsequently of R2P as well. The findings of the article, on the basis of the fore-mentioned argument is that a change must take place from a market- orientated misinterpretation of R2R to an approach attempting to implement human development doctrines, since the latter lie at the heart of human security and can be proven more effective in dealing with the root- causes of conflicts. Methodologically, the article begins with an examination of human security and of its binding nature on the basis of its orientation from the UN Charter. It also examines its significance in the framework of the collective security system. Then, follows the analysis of why and how human development constitutes an integral part of human security. At the next part it is proven that R2P in general and R2R more specifically constitute or should constitute an attempt to implement human security doctrines within the collective security system. Having built this triangular relationship it is argued that human development is proven to be the most suitable notion, so that the spirit of human security and the scopes of R2P are successfully implemented.Keywords: human security, un charter, responsibility to protect, responsibility to rebuild, human development
Procedia PDF Downloads 28312731 Human Security and Human Trafficking Related Corruption
Authors: Ekin D. Horzum
Abstract:
The aim of the proposal is to examine the relationship between human trafficking related corruption and human security. The proposal suggests that the human trafficking related corruption is about willingness of the states to turn a blind eye to the human trafficking cases. Therefore, it is important to approach human trafficking related corruption in terms of human security and human rights violation to find an effective way to fight against human trafficking. In this context, the purpose of this proposal is to examine the human trafficking related corruption as a safe haven in which trafficking thrives for perpetrators.Keywords: human trafficking, human security, human rights, corruption, organized crime
Procedia PDF Downloads 48012730 Congestion Control in Mobile Network by Prioritizing Handoff Calls
Authors: O. A. Lawal, O. A Ojesanmi
Abstract:
The demand for wireless cellular services continues to increase while the radio resources remain limited. Thus, network operators have to continuously manage the scarce radio resources in order to have an improved quality of service for mobile users. This paper proposes how to handle the problem of congestion in the mobile network by prioritizing handoff call, using the guard channel allocation scheme. The research uses specific threshold value for the time of allocation of the channel in the algorithm. The scheme would be simulated by generating various data for different traffics in the network as it would be in the real life. The result would be used to determine the probability of handoff call dropping and the probability of the new call blocking as a way of measuring the network performance.Keywords: call block, channel, handoff, mobile cellular network
Procedia PDF Downloads 39812729 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century
Authors: Stephen L. Roberts
Abstract:
This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.Keywords: algorithms, global health, pandemic, surveillance
Procedia PDF Downloads 19112728 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 11412727 Optimizing the Passenger Throughput at an Airport Security Checkpoint
Authors: Kun Li, Yuzheng Liu, Xiuqi Fan
Abstract:
High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.Keywords: queue theory, security check, stochatic process, Monte Carlo simulation
Procedia PDF Downloads 20212726 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 11212725 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network
Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.Keywords: ERA, fuzzy logic, network model, WSN
Procedia PDF Downloads 28412724 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques
Authors: Kouzi Katia
Abstract:
This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table
Procedia PDF Downloads 34812723 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks
Procedia PDF Downloads 28812722 Extending the AOP Joinpoint Model for Memory and Type Safety
Authors: Amjad Nusayr
Abstract:
Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches, including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory has a valid pointer or a reference with a valid type. Aspect-Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and DB transaction managing. In this paper, we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices.Keywords: aspect oriented programming, programming languages, software security, memory and type safety
Procedia PDF Downloads 135