Search results for: lateral deflection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 987

Search results for: lateral deflection

537 Improving Mathematics and Engineering Interest through Programming

Authors: Geoffrey A. Wright

Abstract:

In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.

Keywords: programming, engineering, technology, complementary subjects

Procedia PDF Downloads 335
536 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 109
535 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 104
534 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 214
533 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester

Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani

Abstract:

This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.

Keywords: internal damping coefficient, external damping coefficient, euler-bernoulli, energy harvester, galfenol, magnetostrictive, response surface method

Procedia PDF Downloads 93
532 Investigation of Distortion and Impact Strength of 304 L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A.Shahi, A. Kumar

Abstract:

In this study, the effects of geometric configurations of butt joints i.e. double V groove, double U groove and UV groove of AISI 304L of thickness 12 mm by using Gas Tungsten Arc Welding (GTAW) are investigated. The magnitude of transverse shrinkage stress and distortion generated during welding under the unrestrained conditions of butt joints is the main objective of the study. The effect of groove design on impact strength and metallurgical properties are also studied. The Finite element analysis for the groove design is done and compared the actual experimentation. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for multipass joint with a standard analogy of 80%. In the case of VV groove design it was found that the transverse stress and cumulative deflection have the lowest value. It was found that the UV groove design had the maximum ultimate and yield tensile strength, VV groove had the highest impact strength. Vicker’s hardness value of all the groove design was measured. Micro structural studies were carried out using conventional microscopic tools which revealed a lot of useful information for correlating the microstructure with mechanical properties.

Keywords: weld groove design, distortion, AISI 304 L, butt joint, FEM, GTAW

Procedia PDF Downloads 341
531 Design and Simulation High Sensitive MEMS Capacitive Pressure Sensor with Small Size for Glaucoma Treatment

Authors: Yadollah Hezarjaribi, Mahdie Yari Esboi

Abstract:

In this paper, a novel MEMS capacitive pressure sensor with small size and high sensitivity is presented. This sensor has the separated clamped square diaphragm and the movable plate. The diaphragm material is polysilicon. The movable and fixed plates and mechanical coupling are gold. The substrate and diaphragm are pyrex glass and polysilicon, respectively. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes with pressure for this reason with this design is improved the capacitance and sensitivity with small size. This sensor is designed for low pressure between 0-60 mmHg that is used for medical application such as treatment of an incurable disease called glaucoma. The size of this sensor is 350×350 µm2 and the thickness of the diaphragm is 2µm with 1μ air gap. This structure is designed by intellisuite software. In this MEMS capacitive pressure sensor the sensor sensitivity, diaphragm mechanical sensitivity for polysilicon diaphragm are 0.0469Pf/mmHg, 0.011 μm/mmHg, respectively. According to the simulating results for low pressure, the structure with polysilicon diaphragm has more change of the displacement and capacitance, this leads to high sensitivity than other diaphragms.

Keywords: glaucoma, MEMS capacitive pressure sensor, square clamped diaphragm, polysilicon

Procedia PDF Downloads 288
530 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 249
529 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 564
528 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes

Authors: Bouziane Mohamed Tewfik

Abstract:

In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis

Procedia PDF Downloads 441
527 A Pink-Pigmented Facultative Methylobacterium sp Isolated from Retama monosperma Root Nodules

Authors: N. Selami, M. Kaid Harche

Abstract:

A pink-pigmented, aerobic, facultatively methylotrophic bacterium, was isolated from Retama monosperma root nodules and identified as a member of the genus Methylobacterium. Inoculation of R. monosperma plants by a pure culture of isolate strain under a hydroponic condition, resulted, 10 dpi, the puffiness at lateral roots. The observation in detail the anatomy and ultra-structure of infection sites by light and electron microscopy show that the bacteria induce stimulation of the division of cortical cells and digestion of epidermis cells then, Methylobacterium was observed in the inter and intracellular spaces of the outer cortex root. These preliminary results allow us to suggest the establishment of an epi-endosymbiotic interaction between Methylobacterium sp and R. monosperma.

Keywords: endophytic colonization, Methylobacterium, microscopy, nodule, pink pigmented, Retama monosperma

Procedia PDF Downloads 339
526 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 65
525 FE Analysis of the Notch Effect on the Behavior of Repaired Crack with Bonded Composite Patch in Aircraft Structures

Authors: Faycal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this paper, the finite element analysis is applied to study the performance of the bonded composite reinforcement or repair for reducing stress concentration at a semi-circular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress concentration factor at the notch tip is reduced about 30% and the maximal reduction of the stress intensity factor is about 80%. The adhesive properties must be optimized in order to increase the performance of the patch repair or reinforcement.

Keywords: bonded repair, notch, crack, adhesive, composite

Procedia PDF Downloads 363
524 Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector

Authors: Nabilah Ibrahim, Hafiz Mohd Zaini, Wan Fatin Liyana Mutalib

Abstract:

Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image

Keywords: ultrasound 3D images, axial and lateral resolution, asymmetric reflector, Arduino software

Procedia PDF Downloads 535
523 Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving

Authors: Marcus Walter, Norbert Nitzsche, Dirk Odenthal, Steffen Müller

Abstract:

This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle.

Keywords: friction estimation, friction compensation, steering system, lateral vehicle guidance

Procedia PDF Downloads 488
522 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 315
521 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 190
520 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 193
519 Relative Study of the Effect of the Temperature Gradient on Free Vibrations of Clamped Visco-Elastic Rectangular Plates with Linearly and Exponentially Thickness Variations Respectively in Two Directions

Authors: Harvinder Kaur

Abstract:

Rayleigh–Ritz method is a broadly used classical method for the calculation of the natural vibration frequency of a structure in the second or higher order. Here it is used to construct a mathematical model of relative study of the thermal effect on free transverse vibrations of clamped (c-c-c-c type) visco-elastic rectangular plate with linearly and exponentially thickness variations respectively in two directions. Researchers in the field of Engineering always make an effort for better designs of mechanical structures. In-depth study of the vibration behavior of tapered plates with diverse thickness variation under high temperature would ultimately help to finalize the accurate design of a structure. The perfect tapered structure saves weight and as well as expenses. In the present paper, the comparison has been done for deflection and time period corresponding to the first two modes of vibrations of clamped plate for various values of aspect ratio, thermal constants, and taper constants of both the cases.

Keywords: Rayleigh-Ritz Method, tapered plates, transverse vibration, thermal constant, visco-elasticity

Procedia PDF Downloads 200
518 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 260
517 An Inherent Risk to Damage the Popliteus Tendon by Some Femoral Component Designs: A Pilot Study in Indian Knees

Authors: Rajendra Kanojia

Abstract:

Femoral components with inbuilt rotation require thicker flexion resection of the lateral femoral condyle and could potential risk to damage the popliteus tendon especially in the smaller Asian knees. We prospectively evaluated 10 patients with bilateral varus osteoarthritis knee to size the cuts and their location in relation to the popliteus tendon. Two different types of implant were used on either side, one side requires resection in 3° external rotation (group A) and other side femoral component with inbuilt external roation (group B). We had popliteus tendon injury in 3 knees all from group B. Risk of damaging the popliteus tendon was found higher in group B.

Keywords: popliteaus tendon injury, TKA, orthopaedic surgery, biomechanics and clinical applications

Procedia PDF Downloads 308
516 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer

Authors: Osama Terra, Mariesa Nel, Hatem Hussein

Abstract:

Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.

Keywords: OTDR calibration, recirculating loop, concatenated method, standard fiber

Procedia PDF Downloads 421
515 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles

Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine

Abstract:

This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).

Keywords: VO2, VO2(B), MOSFET, gate voltage, humidity sensor

Procedia PDF Downloads 299
514 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level

Procedia PDF Downloads 343
513 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures

Authors: M. Abdollahi, S. N. Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.

Keywords: beam, EPS block, numerical analysis, post, stress distribution

Procedia PDF Downloads 222
512 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique

Authors: Hassen M. Ouakad

Abstract:

In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.

Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin

Procedia PDF Downloads 199
511 Common Sports Medicine Injuries in Primary Health Care

Authors: Thuraya Ahmed Hamood Al Shidhani

Abstract:

Sports Medicine injuries are very common in primary health care. It is not necessary related to direct trauma, but it could be because of repetitive stress and overuse injuries. Knowledge of Primary Health care providers about the common sports medicine injuries and when to refer to a specialist is essential. Common sports injuries are muscle strain, joint sprain, bone bruise, Patellofemoral pain syndrome, Anterior cruciate ligament injuries, meniscal injuries, ankle ligaments injuries, concussion, Rotator cuff tendinosis/impingement syndrome, lateral and medial epicondylitis and fractures. Systematic approach is very useful in evaluation of sports injuries. RICE is important in initial management. Physiotherapy is essential for rehabilitation. Definitive Management is dependent on patient’s condition and function.

Keywords: common, sports medicine injuries, primary health care, injuries

Procedia PDF Downloads 55
510 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem

Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn

Abstract:

At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.

Keywords: CPTU, pore water pressure, pile rebound

Procedia PDF Downloads 294
509 Pushover Analysis of Reinforced Concrete Beam-Column Joint Strengthening with Ultra High Performance Concrete

Authors: Abdulsamee Halahla, Emad Allout

Abstract:

The purpose of this research is to study the behavior of exterior beam-column joints (BCJs) strengthened with ultra-high performance concrete (UHPC), in terms of the shear strength and maximum displacement using pushover analysis at the tip of the beam. A finite element (F.E) analysis was performed to study three main parameters – the level of the axial load in the column (N), the beam shear reinforcement (Av/s)B, and the effect of using UHPC. The normal concrete at the studied joint region was replaced by UHPC. The model was verified by using experimental results taken from the literature. The results showed that the UHPC contributed to the transference of the plastic hinge from the joint to the beam-column interface. In addition, the strength of the UHPC-strengthened joints was enhanced dramatically from 8% to 38% for the joints subjected to 12.8MPa and zero axial loads, respectively. Moreover, the UHPC contributed in improving the maximum deflection. This improvement amounted to 1% and 176% for the joints subjected to zero and 12.8MPa axial load, respectively.

Keywords: ultra high performance concrete, ductility, reinforced concrete joints, finite element modeling, nonlinear behavior; pushover analysis

Procedia PDF Downloads 110
508 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Spectrum Analyzer

Authors: Osama Terra, Hatem Hussein, Adriaan Van Brakel

Abstract:

Dense wavelength division multiplexing (DWDM) technology requires tight specification and therefore measurement of wavelength accuracy and stability of the telecommunication lasers. Thus, calibration of the used Optical Spectrum Analyzers (OSAs) that are used to measure wavelength is of a great importance. Proficiency testing must be performed on such measuring activity to insure the accuracy of the measurement results. In this paper, a new comparison scheme is introduced to test the performance of such calibrations. This comparison scheme is implemented between NIS-Egypt and NMISA-South Africa for the calibration of the wavelength scale of an OSA. Both institutes employ reference gas cell to calibrate OSA according to the standard IEC/ BS EN 62129 (2006). The result of this comparison is compiled in this paper.

Keywords: OSA calibration, HCN gas cell, DWDM technology, wavelength measurement

Procedia PDF Downloads 278