Search results for: kupiec LR tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4482

Search results for: kupiec LR tests

4032 The Use of Five Times Sit-To-Stand Test in Ambulatory People with Spinal Cord Injury When Tested with or without Hands

Authors: Lalita Khuna, Sugalya Amatachaya, Pipatana Amatachaya, Thiwabhorn Thaweewannakij, Pattra Wattanapan

Abstract:

The five times sit-to-stand test (FTSST) has been widely used to quantify lower extremity motor strength (LEMS), dynamic balance ability, and risk of falls in many individuals. Recently, it has been used in ambulatory patients with spinal cord injury (SCI) but variously using with or without hands according to patients’ ability. This difference might affect the validity of the test in these individuals. Thus, this study assessed the concurrent validity of the FTSST in ambulatory individuals with SCI, separately for those who could complete the test with or without hands using LEMS and standard functional measures as gold standards. Moreover, the data of the tests from those who completed the FTSST with and without hands were compared. A total of 56 ambulatory participants with SCI who could complete sit-to-stand with or without hands were assessed for the time to complete the FTSST according to their ability. Then they were assessed for their LEMS scores and functional abilities, including the 10-meter walk test (10MWT), the walking index for spinal cord injury II (WISCI II), the timed up and go test (TUGT), and the 6-minute walk test (6MWT). The Mann-Whitney U test was used to compare the different findings between the participants who performed the FTSST with and without hands. The Spearman rank correlation coefficient (ρ) was applied to analyze the levels of correlation between the FTSST and standard tests (LEMS scores and functional measures). There were significant differences in the data between the participants who performed the test with and without hands (p < 0.01). The time to complete the FTSST of the participants who performed the test without hands showed moderate to strong correlation with total LEMS scores and all functional measures (ρ = -0.71 to 0.69, p < 0.001). On the contrary, the FTSST data of those who performed the test with hands were significantly correlated only with the 10MWT, TUGT, and 6MWT (ρ = -0.47 to 0.57, p < 0.01). The present findings confirm the concurrent validity of the FTSST when performed without hands for LEMS and functional mobility necessary for the ability of independence and safety of ambulatory individuals with SCI. However, the test using hands distort the ability of the outcomes to reflect LEMS and WISCI II that reflect lower limb functions. By contrast, the 10MWT, TUGT, and 6MWT allowed upper limb contribution in the tests. Therefore, outcomes of these tests showed a significant correlation to the outcomes of FTSST when assessed using hands. Consequently, the use of FTSST with or without hands needs to consider the clinical application of the outcomes, i.e., to reflect lower limb functions or mobility of the patients.

Keywords: mobility, lower limb muscle strength, clinical test, rehabilitation

Procedia PDF Downloads 149
4031 The Effects of Normal Aging on Reasoning Ability: A Dual-Process Approach

Authors: Jamie A. Prowse Turner, Jamie I. D. Campbell, Valerie A. Thompson

Abstract:

The objective of the current research was to use a dual-process theory framework to explain these age-related differences in reasoning. Seventy-two older (M = 80.0 years) and 72 younger (M = 24.6 years) adults were given a variety of reasoning tests (i.e., a syllogistic task, base rate task, the Cognitive Reflection Test, and a perspective manipulation), as well as independent tests of capacity (working memory, processing speed, and inhibition), thinking styles, and metacognitive ability, to account for these age-related differences. It was revealed that age-related differences were limited to problems that required Type 2 processing and were related to differences in cognitive capacity, individual difference factors, and strategy choice. Furthermore, older adults’ performance can be improved by reasoning from another’s’ perspective and cannot, at this time, be explained by metacognitive differences between young and older adults. All of these findings fit well within a dual-process theory of reasoning, which provides an integrative framework accounting for previous findings and the findings presented in the current manuscript.

Keywords: aging, dual-process theory, performance, reasoning ability

Procedia PDF Downloads 191
4030 Optimization of Bio-Based Lightweight Mortars Containing Wood Waste

Authors: Valeria Corinaldesi, Nicola Generosi, Daniele Berdini

Abstract:

In this study, wood waste from processing by-products was used by replacing natural sand for producing bio-based lightweight mortars. Manufacturers of wood products and furniture usually generate sawdust and pieces of side-cuts. These are produced by cutting, drilling, and milling operations as well. Three different percentages of substitution of quartz sand were tried: 2.5%, 5%, and 10% by volume. Wood by-products were pre-soaked in calcium hydroxide aqueous solution in order to obtain wood mineralization to avoid undesirable effects on the bio-based building materials. Bio-based mortars were characterized by means of compression and bending tests, free drying shrinkage tests, resistance to water vapour permeability, water capillary absorption, and, finally, thermal conductivity measurements. Results obtained showed that a maximum dosage of 5% wood by-products should be used in order to avoid an excessive loss of bio-based mortar mechanical strength. On the other hand, by adding the proper dosage of water-reducing admixture, adequate mechanical performance can be achieved even with 10% wood waste addition.

Keywords: bio-based mortar, energy efficiency, lightweight mortar, thermal insulation, wood waste

Procedia PDF Downloads 4
4029 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 137
4028 Long Term Strength Behavior of Hemp-Concrete

Authors: Elie Awwad, Bilal Hamad, Mounir Mabsout, Helmi Khatib

Abstract:

The paper reports test results on the long-term behavior of sustainable hemp-concrete material prepared in research work conducted at the American University of Beirut. The tests results are in terms of compressive and splitting tensile tests conducted on standard 150x300 mm cylinders. A control mix without fibers, one polypropylene-concrete mix, and ten hemp-concrete mixes were prepared with different percentages of industrial hemp fibers and reduced coarse aggregate contents. The objective was to investigate the strength properties of hemp-reinforced concrete at 1.5 years age as compared with control mixes. The results indicated that both the compressive strength and the splitting tensile strength results of all tested cylinders increased as compared with the 28-days values. Also, the difference between the hemp-concrete samples and the control samples at 28 days was maintained at 1.5 years age indicating that hemp fibers did not exhibit any negative effect on the long-term strength properties of concrete.

Keywords: hemp-reinforced concrete, natural fibers, compressive strength, splitting tensile strength

Procedia PDF Downloads 363
4027 The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance

Authors: Chun Pao Kuo, Chi Tong Lin

Abstract:

The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel.

Keywords: diesel engine, exhaust pollution, fuel injection timing, tire pyrolysis oil

Procedia PDF Downloads 408
4026 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 166
4025 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 102
4024 Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study

Authors: R. Güçlü, E. Küçüksakarya

Abstract:

Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students.

Keywords: color term, gender, mental lexicon, word association task

Procedia PDF Downloads 131
4023 The Effectiveness of Self-Compassion Training: A Field Trial Study

Authors: Esmaeil Sarikhani

Abstract:

Objectives: Considering the importance of introducing new methods of improving self-compassion and compassion to the others in nursing students, this study intends to evaluate the effect of self-compassion training on nursing students. Methods: This is a field trial study in which 52 nursing interns from Isfahan University of Medical Sciences were selected using convenience sampling method and divided in two experimental and control groups. The sampling was done during two phases: before and after the intervention. The intervention consisted of eight sessions over eight weeks of self-compassion training. The data were collected using the self-compassion standard questionnaire with 26 questions before and after the intervention. Data were then analyzed by the SPSS18 software and independent and paired T-tests, and also Chi-square and Mann-Whitney tests. Results: The results obtained from the independent t-test showed that the mean score of self-compassion and its components in the experimental group was significantly increased compared to the control group (p < 0.001). Comparing the groups, the mean overall score difference of self-compassion and its components had also a statistically significant change after the intervention (p < 0.001). Conclusion: Self-compassion training program, leads to improving nursing students' self-compassion. As it seems, this method can be used as an important training course in order to improve compassion of nursing students to themselves and the others.

Keywords: self-compassion, student, nursing students, field trial

Procedia PDF Downloads 284
4022 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 38
4021 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 120
4020 Effect of Positive Psychology (PP) Interventions on College Students’ Well-Being, Career Stress and Coronavirus Anxiety

Authors: Erva Kaygun

Abstract:

The purpose of this research is to investigate the effects of positive psychology interventions on college students' positive-negative emotions, coronavirus anxiety, and career stress. 4 groups of college students are compared in terms of the level of exposure to PP constructs ( Non-Psychology, Psychology, Positive Psychology Course, and Positive Psychology Boot Camp). In this research, Pearson Correlation, independent t-tests, ANOVA, and Post-Hoc tests are conducted. Without being significant, the groups exposed to PP constructs showed higher positive emotions and total PERMA scores, whereas negative emotions, career stress, and coronavirus stress remained similar. It is crucial to indicate that career stress is higher among all psychology students when compared to non-psychology students. The results showed that the highest exposure group (PP Boot Camp) showed no difference in negative emotions, whereas higher PERMA scores and positive emotion scores were on the Positive and Negative Affect Schedule (PANAS) scale.

Keywords: positive psychology, college students, well being, anxiety

Procedia PDF Downloads 192
4019 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings

Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi

Abstract:

In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.

Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel

Procedia PDF Downloads 236
4018 The Motivation System Development: Case-Study of the Trade Metal Company in Russian Federation

Authors: Elena V. Lysenko

Abstract:

Motivating as the leading function of a modern Human Resources Management involves issues of increasing the effectiveness of the organization in a broader context. During the formation of motivational systems, the top-management of organization should pay equal attention to both external motivation (incentive system) and internal (self-motivation). The balance of internal and external motivation harmonizes the relations between employers and employees, increases the level of job satisfaction by the organization staff, which in turn leads the organization to success and ensures the organization`s profitability and competitiveness in the market environment. The article is devoted to the study of personnel motivation system in the small metal trade company, which is located in Yekaterinburg, Russian Federation. The study took place during November-December, 2016 ordered by the Company Director to analyze the motivational potential of work (managerial aspect of motivation) and motivation of personnel (personnel aspect of motivation) with the purpose to construct a system of employees’ motivation. The research tools included 6 specially selected tests of motivation, which are: “Motivation profile of your job”, “Constructive motivational attitudes”, Tests about Motivation of achievements (1st variant: Test by А.Mehrabian by the theory of D.С.McClelland and 2nd variant: Test about leading needs according with the theory of D.С.MacClelland), Tests by T.Elers (1st variant: “Determination of the motivation towards success or to avoid failure” and 2nd variant: “Trends to achieve results or to avoid failure”). The results of the study showed only one, but fundamental problem of the whole organization: high level of both motivational potential in work and self-motivation, especially in terms of achievement motivation, but serious lack of productivity. According the results which study showed this problem is derived from insufficient staff competence. The research suggests basic guidelines in order to build the new personnel motivation system for this Company, which is planned to be developed in the nearest future.

Keywords: incentive system, motivation of achievements, motivation system, self-motivation

Procedia PDF Downloads 311
4017 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 166
4016 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 272
4015 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 56
4014 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature

Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa

Abstract:

The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).

Keywords: flame propagation, flame propagation velocity, explosion, propane, methane

Procedia PDF Downloads 226
4013 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell Serra de Almeida Martins, Benedito de Souza Ribeiro Neto, Gerson Lima Serejo, Carlos Gustavo Resque Dos Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: multiscale recognition, indoor localization, tape-shaped marker, fiducial marker

Procedia PDF Downloads 134
4012 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets

Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer

Abstract:

Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.

Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact

Procedia PDF Downloads 197
4011 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 446
4010 A Comparative Genre-Based Study of Research Articles' Method and Results Sections Authored by Iranian and English Native Speakers

Authors: Mohammad Amin Mozaheb, Mahnaz Saeidi, Saeideh Ahangari, Saeideh Ahangari

Abstract:

The present genre-driven study aims at comparing moves and sub-moves deployed by Iranian and English medical writers while writing their research articles in English. To obtain the goals of the study, the researchers randomly selected a number of medical articles and compared them using Nwogu (1997)’s model. The results of relevant statistical tests, Chi-square tests for goodness of fit, used for comparing the two groups of the articles dubbed IrISI (Iranian ISI articles) and EISI (English ISI articles) have shown that no significant difference exists between the two groups of the articles in terms of the moves and sub-moves used in the method and results sections of them. The findings can be beneficial for people interested in English for Specific Purposes (ESP) and medical experts. The findings can also increase language awareness and genre awareness among researchers who are interested in publishing their research outcomes in ISI-indexed journals in the Islamic Republic of Iran and some other world countries.

Keywords: writing, ESP, research articles, medical sciences, language, scientific writing

Procedia PDF Downloads 367
4009 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.

Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis

Procedia PDF Downloads 162
4008 Model Studies on Shear Behavior of Reinforced Reconstituted Clay

Authors: B. A. Mir, A. Juneja

Abstract:

In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.

Keywords: reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests

Procedia PDF Downloads 409
4007 Corrosion and Tribocorrosion Behaviour of Potential Coatings Applied in High-Strength Low-Alloy Steel for Offshore Applications

Authors: Ainara Lopez-Ortega, Raquel Bayon, Elena Rodriguez, Amaya Igartua

Abstract:

The materials used in offshore structural applications are continuously subjected to aggressive environmental conditions that accelerate their degradation, thus shortening their useful life. Wear, corrosion and the effect of marine microorganisms are the main processes taking place in marine environments, and whenever they occur simultaneously the durability of materials is strongly reduced. In the present work, the tribocorrosion behaviour of a High-Strength Low-Alloy (HSLA) steel and three coatings commonly used for protecting offshore components has been studied by means of unidirectional tribological tests in synthetic seawater. The coatings were found to enhance the tribological response of the uncoated steel and provide the system with improved corrosion resistance, in terms of smaller material losses and reduction of friction coefficients. The tests were repeated after ageing the materials in a salt-fog cabinet, and the aging process was found to slightly affect the performance of two of the coatings, in terms of higher material losses, meanwhile the third coating was not affected.

Keywords: coatings, corrosion, high-strength low-alloy steel, seawater, tribocorrosion

Procedia PDF Downloads 419
4006 Revalidation and Hormonization of Existing IFCC Standardized Hepatic, Cardiac, and Thyroid Function Tests by Precison Optimization and External Quality Assurance Programs

Authors: Junaid Mahmood Alam

Abstract:

Revalidating and harmonizing clinical chemistry analytical principles and optimizing methods through quality control programs and assessments is the preeminent means to attain optimal outcome within the clinical laboratory services. Present study reports revalidation of our existing IFCC regularized analytical methods, particularly hepatic and thyroid function tests, by optimization of precision analyses and processing through external and internal quality assessments and regression determination. Parametric components of hepatic (Bilirubin ALT, γGT, ALP), cardiac (LDH, AST, Trop I) and thyroid/pituitary (T3, T4, TSH, FT3, FT4) function tests were used to validate analytical techniques on automated chemistry and immunological analyzers namely Hitachi 912, Cobas 6000 e601, Cobas c501, Cobas e411 with UV kinetic, colorimetric dry chemistry principles and Electro-Chemiluminescence immunoassay (ECLi) techniques. Process of validation and revalidation was completed with evaluating and assessing the precision analyzed Preci-control data of various instruments plotting against each other with regression analyses R2. Results showed that: Revalidation and optimization of respective parameters that were accredited through CAP, CLSI and NEQAPP assessments depicted 99.0% to 99.8% optimization, in addition to the methodology and instruments used for analyses. Regression R2 analysis of BilT was 0.996, whereas that of ALT, ALP, γGT, LDH, AST, Trop I, T3, T4, TSH, FT3, and FT4 exhibited R2 0.998, 0.997, 0.993, 0.967, 0.970, 0.980, 0.976, 0.996, 0.997, 0.997, and R2 0.990, respectively. This confirmed marked harmonization of analytical methods and instrumentations thus revalidating optimized precision standardization as per IFCC recommended guidelines. It is concluded that practices of revalidating and harmonizing the existing or any new services should be followed by all clinical laboratories, especially those associated with tertiary care hospital. This is will ensure deliverance of standardized, proficiency tested, optimized services for prompt and better patient care that will guarantee maximum patients’ confidence.

Keywords: revalidation, standardized, IFCC, CAP, harmonized

Procedia PDF Downloads 269
4005 Phytochemical Screening, and Antimicrobial Evaluation of Bioactive Compounds from Red Millipede (Trigoniulus corallinus)

Authors: Y. B. Idris, M. Sirajo, L. G. Hassan, T. Izuagie, T. Muktar, I. Lawal, A. U. Abubakar

Abstract:

This study investigates the extraction, phytochemical composition, and antimicrobial activity of bioactive compounds from red millipedes using three different solvents: n-Hexane, Chloroform, and Methanol. The largest yield was obtained from the methanol extract, which had percentage yields of 0.8%, 2.2%, and 5.6%, respectively. Terpenoids and sterols were found in all extracts according to preliminary zoochemical screening, but only the methanol extract included saponins and phenols. With a maximum zone of inhibition of 9 mm at 1000 µg/ml, antimicrobial susceptibility tests revealed that the methanol extract had the strongest antibacterial activity, especially against Escherichia coli and Staphylococcus aureus. Significant activity was also shown by the n-hexane extract, although the chloroform extract had only mild antibacterial activity. Tests for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) verified that the methanol extract was more effective than the other extracts, particularly against S. aureus and S. typhi. None of the extracts, nonetheless, showed any discernible antifungal action. The potential of red millipede extracts, especially those based on methanol, as a source of antimicrobial chemicals for use in the future is highlighted by this work.

Keywords: millipedes, defensive extraction, antibacterial, antifungal, antimicrobial, minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC)

Procedia PDF Downloads 12
4004 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients

Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari

Abstract:

The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.

Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation

Procedia PDF Downloads 84
4003 Blending Effects on Crude Oil Stability: An Experimental Study

Authors: Muheddin Hamza, Entisar Etter

Abstract:

This study is a part of investigating the possibility of blending two crude oils obtained from Libyan oil fields, namely crude oil (A) and crude oil (B) with different ratios, prior to blending the crude oils have to be compatible in order to avoid phase out and precipitation of asphaltene from the bulk of crude. The physical properties of both crudes such as density, viscosity, pour point and sulphur content were measured according to (ASTM) method. To examine the stability of both crudes and their blends, the oil compatibility model using microscopic, colloidal instability index (CII) using SARA analysis and asphaltene stabilization test using Turbiscan tests were conducted in the Libyan Petroleum Institute laboratories. Compatibility tests were carried out with both crude oils, the insolubility number (IN), and the solubility blending number (SBN), for both crude oils and their blends were calculated. The criteria for compatibility of any blend is that the volume average solubility blending number (SBN) is greater than the insolubility number (IN) of any component in the blend, the results indicated that both crudes were compatible. To support the results of compatibility tests the SARA analysis was done for the fractional determination of (saturates, aromatics, resins and asphaltenes) content. From this result, the colloidal Instability index (CII) and resin to asphaltenes ratio (R/A) were calculated for crudes and their blends. The results show that crude oil (B) which has higher (R/A) and lower (CII) is more stable than crude oil (A) and as the ratio of crude (B) increases in the blend the (CII) and (R/A) were improved, and the blends becomes more stable. Asphaltene stabilization test was also conducted for the crudes and their blends using Turbiscan MA200 according to the standard test method ASTM D7061-04, the Turbiscan shows that the crude (B) is more stable than crude (A) which shows a fair tendency. The (CII) and (R/A) were compared with the solubility number (SBN) for each crude and the blends along with Turbiscan results. The solubility blending number (SBN) of the crudes and their blends show that the crudes are compatible, also by comparing (R/A) and (SBN) values of the blends, it can be seen that they are complements of each other. All the experimental results show that the blends of both crudes are more stability.

Keywords: asphaltene, crude oil, compatibility, oil blends, resin, SARA

Procedia PDF Downloads 510