Search results for: knapsack problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7053

Search results for: knapsack problem

6603 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 207
6602 D6tions: A Serious Game to Learn Software Engineering Process and Design

Authors: Hector G. Perez-Gonzalez, Miriam Vazquez-Escalante, Sandra E. Nava-Muñoz, 
 Francisco E. Martinez-Perez, Alberto S. Nunez-Varela

Abstract:

The software engineering teaching process has been the subject of many studies. To improve this process, researchers have proposed merely illustrative techniques in the classroom, such as topic presentations and dynamics between students on one side or attempts to involve students in real projects with companies and institutions to bring them to a real software development problem on the other hand. Simulators and serious games have been used as auxiliary tools to introduce students to topics that are too abstract when these are presented in the traditional way. Most of these tools cover a limited area of the huge software engineering scope. To address this problem, we have developed D6tions, an educational serious game that simulates the software engineering process and is designed to experiment the different stages a software engineer (playing roles as project leader or as a developer or designer) goes through, while participating in a software project. We describe previous approaches to this problem, how D6tions was designed, its rules, directions, and the results we obtained of the use of this game involving undergraduate students playing the game.

Keywords: serious games, software engineering, software engineering education, software engineering teaching process

Procedia PDF Downloads 468
6601 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery

Authors: Rima Harche, Abdelkader Mouheb

Abstract:

The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.

Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient

Procedia PDF Downloads 407
6600 Comparisons between Student Leaning Achievements and Their Problem Solving Skills on Stoichiometry Issue with the Think-Pair-Share Model and Stem Education Method

Authors: P. Thachitasing, N. Jansawang, W. Rakrai, T. Santiboon

Abstract:

The aim of this study is to investigate of the comparing the instructional design models between the Think-Pair-Share and Conventional Learning (5E Inquiry Model) Processes to enhance students’ learning achievements and their problem solving skills on stoichiometry issue for concerning the 2-instructional method with a sample consisted of 80 students in 2 classes at the 11th grade level in Chaturaphak Phiman Ratchadaphisek School. Students’ different learning outcomes in chemistry classes with the cluster random sampling technique were used. Instructional Methods designed with the 40-experimenl student group by Think-Pair-Share process and the 40-controlling student group by the conventional learning (5E Inquiry Model) method. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of Think-Pair-Share and STEM Education Method, students’ learning achievements and their problem solving skills were assessed with the pretest and posttest techniques, students’ outcomes of their instructional the Think-Pair-Share (TPSM) and the STEM Education Methods were compared. Statistically significant was differences with the paired t-test and F-test between posttest and pretest technique of the whole students in chemistry classes were found, significantly. Associations between student learning outcomes in chemistry and two methods of their learning to students’ learning achievements and their problem solving skills also were found. The use of two methods for this study is revealed that the students perceive their learning achievements to their problem solving skills to be differently learning achievements in different groups are guiding practical improvements in chemistry classrooms to assist teacher in implementing effective approaches for improving instructional methods. Students’ learning achievements of mean average scores to their controlling group with the Think-Pair-Share Model (TPSM) are lower than experimental student group for the STEM education method, evidence significantly. The E1/E2 process were revealed evidence of 82.56/80.44, and 83.02/81.65 which results based on criteria are higher than of 80/80 standard level with the IOC, consequently. The predictive efficiency (R2) values indicate that 61% and 67% and indicate that 63% and 67% of the variances in chemistry classes to their learning achievements on posttest in chemistry classes of the variances in students’ problem solving skills to their learning achievements to their chemistry classrooms on Stoichiometry issue with the posttest were attributable to their different learning outcomes for the TPSM and STEMe instructional methods.

Keywords: comparisons, students’ learning achievements, think-pare-share model (TPSM), stem education, problem solving skills, chemistry classes, stoichiometry issue

Procedia PDF Downloads 228
6599 Modified Bat Algorithm for Economic Load Dispatch Problem

Authors: Daljinder Singh, J.S.Dhillon, Balraj Singh

Abstract:

According to no free lunch theorem, a single search technique cannot perform best in all conditions. Optimization method can be attractive choice to solve optimization problem that may have exclusive advantages like robust and reliable performance, global search capability, little information requirement, ease of implementation, parallelism, no requirement of differentiable and continuous objective function. In order to synergize between exploration and exploitation and to further enhance the performance of Bat algorithm, the paper proposed a modified bat algorithm that adds additional search procedure based on bat’s previous experience. The proposed algorithm is used for solving the economic load dispatch (ELD) problem. The practical constraint such valve-point loading along with power balance constraints and generator limit are undertaken. To take care of power demand constraint variable elimination method is exploited. The proposed algorithm is tested on various ELD problems. The results obtained show that the proposed algorithm is capable of performing better in majority of ELD problems considered and is at par with existing algorithms for some of problems.

Keywords: bat algorithm, economic load dispatch, penalty method, variable elimination method

Procedia PDF Downloads 444
6598 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 420
6597 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 409
6596 Frequency Identification of Wiener-Hammerstein Systems

Authors: Brouri Adil, Giri Fouad

Abstract:

The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.

Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science

Procedia PDF Downloads 509
6595 Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method

Procedia PDF Downloads 463
6594 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit

Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev

Abstract:

Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.

Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations

Procedia PDF Downloads 247
6593 A Model for Helicopter Routing Problem

Authors: Aydin Sipahioglu, Gokhan Celik

Abstract:

Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution.

Keywords: helicopter routing problem, vehicle routing with pickup and delivery, integer programming

Procedia PDF Downloads 405
6592 Faithful Extension of Constant Height and Constant Width between Finite Posets

Authors: Walied Hazim Sharif

Abstract:

The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems.

Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive

Procedia PDF Downloads 241
6591 The Development of Private Housing Schemes to Address the Housing Problem: A Case Study of Islamabad

Authors: Zafar Iqbal Zafar, Abdul Waheed

Abstract:

The Capital Development Authority (CDA) Ordinance 1960 requires CDA to acquire land for the provision of housing in Islamabad. However, the pace of residential development was slow and the demand for housing was increasing rapidly. To resolve the growing housing problem, CDA involved the private sector in the development of housing schemes. Detailed bye-laws for regulation of private housing schemes were prepared and these bylaws were called “Modalities & Procedures”. This paper explains how the Modalities and Procedures of CDA have been successful in regulating the development of private housing schemes in Islamabad.

Keywords: housing schemes, master plan, development works, zoning regulations

Procedia PDF Downloads 176
6590 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 498
6589 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System

Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity

Abstract:

In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.

Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction

Procedia PDF Downloads 91
6588 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm

Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan

Abstract:

With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.

Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization

Procedia PDF Downloads 300
6587 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection

Procedia PDF Downloads 169
6586 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 94
6585 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 399
6584 Object Oriented Fault Tree Analysis Methodology

Authors: Yi Xiong, Tao Kong

Abstract:

Traditional safety, risk and reliability analysis approaches are problem-oriented, which make it great workload when analyzing complicated and huge system, besides, too much repetitive work would to do if the analyzed system composed by many similar components. It is pressing need an object and function oriented approach to maintain high consistency with problem domain. A new approach is proposed to overcome these shortcomings of traditional approaches, the concepts: class, abstract, inheritance, polymorphism and encapsulation are introduced into FTA and establish the professional class library that the abstractions of physical objects in real word, four areas relevant information also be proposed as the establish help guide. The interaction between classes is completed by the inside or external methods that mapping the attributes to base events through fully search the knowledge base, which forms good encapsulation. The object oriented fault tree analysis system that analyze and evaluate the system safety and reliability according to the original appearance of the problem is set up, where could mapped directly from the class and object to the problem domain of the fault tree analysis. All the system failure situations can be analyzed through this bottom-up fault tree construction approach. Under this approach architecture, FTA approach is developed, which avoids the human influence of the analyst on analysis results. It reveals the inherent safety problems of analyzed system itself and provides a new way of thinking and development for safety analysis. So that object oriented technology in the field of safety applications and development, safety theory is conducive to innovation.

Keywords: FTA, knowledge base, object-oriented technology, reliability analysis

Procedia PDF Downloads 232
6583 Approximation of Intersection Curves of Two Parametric Surfaces

Authors: Misbah Irshad, Faiza Sarfraz

Abstract:

The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error.

Keywords: approximation, parametric surface, spline function, surface intersection

Procedia PDF Downloads 242
6582 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem

Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang

Abstract:

The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.

Keywords: stud krill herd, economic dispatch, crossover, stud selection, valve-point effect

Procedia PDF Downloads 180
6581 Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation

Authors: Benedict Barnes, Anthony Y. Aidoo

Abstract:

A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard.

Keywords: divergence regularization method, Helmholtz equation, ill-posed inhomogeneous Cauchy boundary conditions

Procedia PDF Downloads 164
6580 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 262
6579 Thermal Management of a Compact Electronic Device Subjected to Different Harsh Operating Conditions

Authors: Murat Parlak, Muhammed Çağlar Malyemez

Abstract:

In a harsh environment, it is crucialtoinvestigatethethermal problem systematically implement a reliableandeffectivecoolingtechniqueformilitaryequipment. In this study, an electronicaldevice has been designed to fit different boundary conditions. Manyfinalternatives can be possiblesolutionsforthethermal problem. Therefore, it is an important step to define an easyproduciblefindesignand a low power fan selection for the optimum unit-design satisfying IP68. The equipment is planned to serve at 71C environment conditions and it also can be screwedto a cold plate at +85C. In both conditions, it is intendedtousethesamechassiswithoutanymodifications. To optimize such a ruggeddevice, all CFD analysis has been done withAnsysFluent 2021®. Afterstudyingpinfins, it is seenthatthesurfacearea is not enough, hencethefin-type is changed to a straightrectangulartypewithforcedconvectioncooling. Finally, a verycompactproductthat can serve in a harsh environment is obtained.

Keywords: electronic cooling, harsh environment, forced convection, compact design

Procedia PDF Downloads 159
6578 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem

Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee

Abstract:

Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.

Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research

Procedia PDF Downloads 316
6577 A Comparative Study of Multi-SOM Algorithms for Determining the Optimal Number of Clusters

Authors: Imèn Khanchouch, Malika Charrad, Mohamed Limam

Abstract:

The interpretation of the quality of clusters and the determination of the optimal number of clusters is still a crucial problem in clustering. We focus in this paper on multi-SOM clustering method which overcomes the problem of extracting the number of clusters from the SOM map through the use of a clustering validity index. We then tested multi-SOM using real and artificial data sets with different evaluation criteria not used previously such as Davies Bouldin index, Dunn index and silhouette index. The developed multi-SOM algorithm is compared to k-means and Birch methods. Results show that it is more efficient than classical clustering methods.

Keywords: clustering, SOM, multi-SOM, DB index, Dunn index, silhouette index

Procedia PDF Downloads 575
6576 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software

Authors: Marian Sagat, Mariana Remesikova

Abstract:

In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.

Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software

Procedia PDF Downloads 127
6575 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: engineering education, open-ended laboratory, environmental engineering lab

Procedia PDF Downloads 290
6574 A Study of Non Linear Partial Differential Equation with Random Initial Condition

Authors: Ayaz Ahmad

Abstract:

In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.

Keywords: drift term, finite time blow up, inverse problem, soliton solution

Procedia PDF Downloads 193