Search results for: impact tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14740

Search results for: impact tests

14290 Student Authenticity: A Foundation for First-Year Experience Courses

Authors: Amy L. Smith

Abstract:

This study investigates the impact of student authenticity while engaging in academic exploration of students' sense of belonging, autonomy, and persistence. Research questions include: How does incorporating authenticity in first-year academic exploration courses impact; 1) first-year students’ sense of belonging, autonomy, and persistence? 2) first-year students’ sense of belonging, autonomy, and persistence during the first and last halves of the fall semester? 3) first-year students’ sense of belonging, autonomy, and persistence among various student demographics? First-year students completed a Likert-like survey at the conclusion of eight weeks (first and last eight weeks/fall semester) academic exploration courses. Course redesign included grounding the curriculum and instruction with student authenticity and creating opportunities for students to explore, define, and reflect upon their authenticity during academic exploration. Surveys were administered at the conclusion of these eight week courses (first and last eight weeks/fall semester). Data analysis included an entropy balancing matching method and t-tests. Research findings indicate integrating authenticity into academic exploration courses for first-year students has a positive impact on students' autonomy and persistence. There is a significant difference between authenticity and first-year students' autonomy (p = 0.00) and persistence (p = 0.01). Academic exploration courses with the underpinnings of authenticity are more effective in the second half of the fall semester. There is a significant difference between an academic exploration course grounding the curriculum and instruction in authenticity offered M8A (first half, fall semester) and M8B (second half, fall semester) (p = 0); M8B courses illustrate an increase of students' sense of belonging, autonomy, and persistence. Integrating authenticity into academic exploration courses for first-year students has a positive impact on varying student demographics (p = 0.00). There is a significant difference between authenticity and low-income (p = 0.04), first-generation (p = 0.00), Caucasian (p = 0.02), and American Indian/Alaskan Native (p = 0.05) first-year students' sense of belonging, autonomy, and persistence. Academic exploration courses embedded in authenticity helps develop first-year students’ sense of belonging, autonomy, and persistence, which are effective traits of college students. As first-year students engage in content courses, professors can empower students to have greater engagement in their learning process by relating content to students' authenticity and helping students think critically about how content is authentic to them — how students' authenticity relates to the content, how students can take their content expertise into the future in ways that, to the student, authentically contribute to the greater good. A broader conversation within higher education needs to include 1) designing courses that allow students to develop and reflect upon their authenticity/to formulate answers to the questions: who am I, who am I becoming, and how will I move my authentic self forward; and 2) a discussion of how to shift from the university shaping students to the university facilitating the process of students shaping themselves.

Keywords: authenticity, first-year experience, sense of belonging, autonomy, persistence

Procedia PDF Downloads 132
14289 Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties

Authors: Hossein Alimohammadi, Mohsen Amirmojahedi, Mehrdad Rowhani

Abstract:

Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy.

Keywords: standard penetration test, soil properties, soil classification, regression method

Procedia PDF Downloads 186
14288 Use of Focus Group Interviews to Design a Health Impact Measurement Tool: A Volunteering Case Study

Authors: Valentine Seymour

Abstract:

Environmental volunteering organisations use questionnaires to explore the relationship between environmental volunteers and their health. To the author’s best knowledge, no one has explored volunteers’ health perception, which could be considered when designing a health impact measurement tool used to increase effective communication. This paper examines environmental volunteers' perceptions of health, knowledge which can be used to design a health impact measurement tool. This study uses focus group interviews, content analysis, and a general inductive approach to explore the health perceptions of volunteers who engage in environmental volunteering activities from the perspective of UK charity The Conservation Volunteers. Findings showed that volunteer groups presented were relatively similar in how they defined the term health, with their overall conceptual model closely resembling that of the World Health Organization 1948 definition. This suggests that future health impact measurement tools in the environmental volunteering sector could base their design around the World Health Organization’s definition.

Keywords: health perception, impact measurement, mental models, tool development

Procedia PDF Downloads 149
14287 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.

Keywords: PHWRs, Zr-2.5Nb, SS-410, wear

Procedia PDF Downloads 86
14286 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 749
14285 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 201
14284 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading

Authors: Wei Zhao, Yuxuan Yao, Hao Chen

Abstract:

In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.

Keywords: battery module, finite element simulation, power battery, packing angle

Procedia PDF Downloads 61
14283 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine

Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta

Abstract:

The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.

Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient

Procedia PDF Downloads 102
14282 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow

Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar

Abstract:

Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.

Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests

Procedia PDF Downloads 11
14281 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State

Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle

Abstract:

Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.

Keywords: environment, impact, long-term, social crises

Procedia PDF Downloads 338
14280 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 332
14279 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items

Authors: Wen-Chung Wang, Xue-Lan Qiu

Abstract:

Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.

Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison

Procedia PDF Downloads 245
14278 Investigating the Environmental Impact of Tourists Activities on Yankari Resort and Safari

Authors: Eldah Ephraim Buba, Sanusi Abubakar Sadiq

Abstract:

Habitat can be degraded by tourism leisure activities for example wildlife viewing can bring abrupt stress for animals and alter their natural behaviors when tourist come too close and wildlife watching have degradation effects on the habitats as they often are accompanied by the noise and commotion created by tourist as they chase wild animals. It is observed that Jos Wild Life Park is usually congested during on-peak periods which causes littering and contamination of the environment by tourist which may lead to changes in the soil nutrient. The issue of unauthorized feeding of animals by a tourist in which the food might be dangerous and harmful to their health and making them be so aggressive is also observed. The aim of the study is to investigate the environmental impact of tourists’ activities in Jos Wild Life Park, Nigeria. The study used survey questionnaires to both tourists and the staff of the wildlife park. One hundred questionnaires were self-administered to randomly selected tourists as the visit the park and some staff. The average mean score of the response was used to show agreement or disagreement. Major findings show the negative impact of tourist’s activities to the environment as air pollution, overcrowding, and congestion, solid littering of the environment, distress to animals and alteration of the ecosystem. Furthermore, the study found the positive impact of tourists activities on the environment to be income generation through tourists activities and infrastructural development. It is recommended that the impact of tourism should be minimized through admitting the right carrying capacity and impact assessment.

Keywords: environmental, impact, investigation, tourists, activities

Procedia PDF Downloads 354
14277 Trends in Extreme Rainfall Events in Tasmania, Australia

Authors: Orpita U. Laz, Ataur Rahman

Abstract:

Climate change will affect various aspects of hydrological cycle such as rainfall. A change in rainfall will affect flood magnitude and frequency in future which will affect the design and operation of hydraulic structures. In this paper, trends in sub-hourly, sub-daily, and daily extreme rainfall events from 18 rainfall stations located in Tasmania, Australia are examined. Two non-parametric tests (Mann-Kendall and Spearman’s Rho) are applied to detect trends at 10%, 5%, and 1% significance levels. Sub-hourly (6, 12, 18, and 30 minutes) annual maximum rainfall events have been found to experience statistically significant upward trends at 10 % level of significance. However, sub-daily durations (1 hour, 3 and 12 hours) exhibit decreasing trends and no trends exists for longer duration rainfall events (e.g. 24 and 72 hours). Some of the durations (e.g. 6 minutes and 6 hours) show similar results (with upward trends) for both the tests. For 12, 18, 60 minutes and 3 hours durations both the tests show similar downward trends. This finding has important implication for Tasmania in the design of urban infrastructure where shorter duration rainfall events are more relevant for smaller urban catchments such as parking lots, roof catchments and smaller sub-divisions.

Keywords: climate change, design rainfall, Mann-Kendall test, trends, Spearman’s Rho, Tasmania

Procedia PDF Downloads 205
14276 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: military endeavor, income, emissions of CO2, panel data

Procedia PDF Downloads 340
14275 Proficiency Testing of English for Specific Academic Purpose: Using a Pilot Test in a Taiwanese University as an Example

Authors: Wenli Tsou, Jessica Wu

Abstract:

Courses of English for specific academic purposes (ESAP) have become popular for higher education in Taiwan; however, no standardized tests have been developed for evaluating learners’ English proficiency in individual designated fields. Assuming a learner’s proficiency in a specific academic area is built up with one’s general proficiency in English with specific knowledge and vocabulary in the content areas, an adequate ESAP proficiency test may be constructed by some selected test items related to the designated academic areas. In this study, through collaboration between a language testing institution and a university in Taiwan, three sets of ESAP tests, covering three disciplinary areas of business and the workplace, science and engineering, and health and medicine majors, were developed and administered to sophomore students (N=1704) who were enrolled in ESAP courses at a university in southern Taiwan. For this study, the courses were grouped into the above-mentioned three disciplines, and students took the specialized proficiency test based on the ESAP course they were taking. Because students were free to select which ESAP course to take, each course had both major and non-major students. Toward the end of the one-semester course, ending in January, 2015, each student took two tests, one of general English (General English Proficiency Test, or GEPT) and the other ESAP. Following each test, students filled out a survey, reporting their test taking experiences. After comparing students’ two test scores, it was found that business majors and health and medical students performed better in ESAP than the non-majors in the class, whereas science and engineering majors did about the same as their non-major counterparts. In addition, test takers with CERF B2 (upper intermediate) level or above performed well in both tests, while students who are below B2 did slightly better in ESAP. The findings suggest that students’ test performance have been enhanced by their specialist content and vocabulary knowledge. Furthermore, results of the survey show that the difficulty levels reported by students are consistent with their test performances. Based on the item analysis, the findings can be used to develop proficiency tests for specific disciplines and to identify ability indicators for college students in their designated fields.

Keywords: english for specific academic purposes (ESAP), general english proficiency test (GEPT), higher education, proficiency test

Procedia PDF Downloads 525
14274 Durability of a Cementitious Matrix Based on Treated Sediments

Authors: Mahfoud Benzerzour, Mouhamadou Amar, Amine Safhi, Nor-Edine Abriak

Abstract:

Significant volumes of sediment are annually dredged in France and all over the world. These materials may, in fact, be used beneficially as supplementary cementitious material. This paper studies the durability of a new cement matrix based on marine dredged sediment of Dunkirk-Harbor (north of France). Several techniques are used to characterize the raw sediment such as physical properties, chemical analyses, and mineralogy. The XRD analysis revealed quartz, calcite, kaolinite as main mineral phases. In order to eliminate organic matter and activate some of those minerals, the sediment is calcined at a temperature of 850°C for 1h. Moreover, four blended mortars were formulated by mixing a portland cement (CEM I 52,5 N) and the calcined sediment as partial cement substitute (0%, 10%, 20% and 30%). Reference mortars, based on the blended cement, were then prepared. This re-use cannot be substantiating and efficient without a durability study. In this purpose, the following tests, mercury porosity, accessible water porosity, chloride permeability, freezing and thawing, external sulfate attack, alkali aggregates reaction, compressive and bending strength tests were conducted on those mortars. The results of most of those tests evidenced the fact that the mortar that contains 10% of the treated sediment is efficient and durable as the reference mortar itself. That would infer that the presence of these calcined sediment improves mortar general behavior.

Keywords: sediment, characterization, calcination, substitution, durability

Procedia PDF Downloads 251
14273 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance

Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad

Abstract:

This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.

Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization

Procedia PDF Downloads 15
14272 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: continuous measurement, flue gas, mercury determination, speciation

Procedia PDF Downloads 193
14271 The Impact of Total Quality Management Practices on Innovation: An Empirical Study

Authors: Oumayma Tajouri

Abstract:

The relationship between total quality management (TQM) practices and innovation is conflictual. Some scholars suggest that TQM has an effect on incremental improvement and would not lead to innovation and creativity. The purpose of this paper is to analyse the association between TQM and different types of innovation. Our goal is to examine to what extent the implementation of TQM practices is indeed supporting innovation in the Tunisian ISO 9001 certified industries. Using a self-administered survey to sample ISO9001 certified industry companies, this study examines five hypotheses and tests the relation between TQM practices and innovation. The principal finding of this study is that TQM has significant and positive effects on innovation in the Tunisian context. The results support that TQM has an influence on incremental, radical, and administrative innovation.

Keywords: total quality management, incremental innovation product and/service, radical innovation product/service, incremental innovation process, radical innovation process, administrative innovation

Procedia PDF Downloads 153
14270 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: failure, finite element method, monitoring and instrumentation, pile, settlement

Procedia PDF Downloads 165
14269 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks

Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan

Abstract:

Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.

Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.

Procedia PDF Downloads 79
14268 A Study of Mortars with Granulated Blast Furnace Slag as Fine Aggregate and Its Influence on Properties of Burnt Clay Brick Masonry

Authors: Vibha Venkataramu, B. V. Venkatarama Reddy

Abstract:

Natural river sand is the most preferred choice as fine aggregate in masonry mortars. Uncontrolled mining of sand from riverbeds for several decades has had detrimental effects on the environment. Several countries across the world have put strict restrictions on sand mining from riverbeds. However, in countries like India, the huge infrastructural boom has made the local construction industry to look for alternative materials to sand. This study aims at understanding the suitability of granulated blast furnace slag (GBS) as fine aggregates in masonry mortars. Apart from characterising the material properties of GBS, such as particle size distribution, pH, chemical composition, etc., of GBS, tests were performed on the mortars with GBS as fine aggregate. Additionally, the properties of five brick tall, stack bonded masonry prisms with various types of GBS mortars were studied. The mortars with mix proportions 1: 0: 6 (cement: lime: fine aggregate), 1: 1: 6, and 1: 0: 3 were considered for the study. Fresh and hardened properties of mortar, such as flow and compressive strength, were studied. To understand the behaviour of GBS mortars on masonry, tests such as compressive strength and flexure bond strength were performed on masonry prisms made with a different type of GBS mortars. Furthermore, the elastic properties of masonry with GBS mortars were also studied under compression. For comparison purposes, the properties of corresponding control mortars with natural sand as fine aggregate and masonry prisms with sand mortars were also studied under similar testing conditions. From the study, it was observed the addition of GBS negatively influenced the flow of mortars and positively influenced the compressive strength. The GBS mortars showed 20 to 25 % higher compressive strength at 28 days of age, compared to corresponding control mortars. Furthermore, masonry made with GBS mortars showed nearly 10 % higher compressive strengths compared to control specimens. But, the impact of GBS on the flexural strength of masonry was marginal.

Keywords: building materials, fine aggregate, granulated blast furnace slag in mortars, masonry properties

Procedia PDF Downloads 119
14267 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: dynamic modelling, long term instability risks, room and pillar, seismic collapse

Procedia PDF Downloads 136
14266 Economic and Environmental Impact of the Missouri Grazing Schools

Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner

Abstract:

Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.

Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture

Procedia PDF Downloads 199
14265 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept

Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst

Abstract:

This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.

Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel

Procedia PDF Downloads 82
14264 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 465
14263 Impact of the Currency Devaluation on Contractors in Egypt

Authors: Mariam Zahwy, Waleed El Nemr, A.Samer Ezeldin

Abstract:

In 2016, the depreciation of the Egyptian pound (EGP) had a substantial impact on Egypt's construction industry. Studies assessing this influence are scarce, though. The impact of devaluation on contractors is measured in this study using empirical data. The difficulties contractors have as a result of rising import material costs, limited financing alternatives, and inflationary pressures are also determined by analyzing survey responses from contractors and industry experts. The approaches contractors utilize to lessen the impact of devaluation are also examined in the research. The survey results show how currency depreciation directly affects contractors in the Egyptian construction industry in terms of financial consequences. Inflationary pressures, fewer financing alternatives, and rising expenses have all affected contractors. To minimize losses, contractors have, nonetheless, put a number of tactics into practice. These findings highlight the importance of understanding and managing the impact of devaluation on the construction industry to ensure its resilience and development.

Keywords: construction, devaluation, contractors, material costs, inflationary pressures, empirical data, quantitative research

Procedia PDF Downloads 5
14262 Metropolis-Hastings Sampling Approach for High Dimensional Testing Methods of Autonomous Vehicles

Authors: Nacer Eddine Chelbi, Ayet Bagane, Annie Saleh, Claude Sauvageau, Denis Gingras

Abstract:

As recently stated by National Highway Traffic Safety Administration (NHTSA), to demonstrate the expected performance of a highly automated vehicles system, test approaches should include a combination of simulation, test track, and on-road testing. In this paper, we propose a new validation method for autonomous vehicles involving on-road tests (Field Operational Tests), test track (Test Matrix) and simulation (Worst Case Scenarios). We concentrate our discussion on the simulation aspects, in particular, we extend recent work based on Importance Sampling by using a Metropolis-Hasting algorithm (MHS) to sample collected data from the Safety Pilot Model Deployment (SPMD) in lane-change scenarios. Our proposed MH sampling method will be compared to the Importance Sampling method, which does not perform well in high-dimensional problems. The importance of this study is to obtain a sampler that could be applied to high dimensional simulation problems in order to reduce and optimize the number of test scenarios that are necessary for validation and certification of autonomous vehicles.

Keywords: automated driving, autonomous emergency braking (AEB), autonomous vehicles, certification, evaluation, importance sampling, metropolis-hastings sampling, tests

Procedia PDF Downloads 283
14261 Impact of Curvatures in the Dike Line on Wave Run-up and Wave Overtopping, ConDike-Project

Authors: Malte Schilling, Mahmoud M. Rabah, Sven Liebisch

Abstract:

Wave run-up and overtopping are the relevant parameters for the dimensioning of the crest height of dikes. Various experimental as well as numerical studies have investigated these parameters under different boundary conditions (e.g. wave conditions, structure type). Particularly for the dike design in Europe, a common approach is formulated where wave and structure properties are parameterized. However, this approach assumes equal run-up heights and overtopping discharges along the longitudinal axis. However, convex dikes have a heterogeneous crest by definition. Hence, local differences in a convex dike line are expected to cause wave-structure interactions different to a straight dike. This study aims to assess both run-up and overtopping at convexly curved dikes. To cast light on the relevance of curved dikes for the design approach mentioned above, physical model tests were conducted in a 3D wave basin of the Ludwig-Franzius-Institute Hannover. A dike of a slope of 1:6 (height over length) was tested under both regular waves and TMA wave spectra. Significant wave heights ranged from 7 to 10 cm and peak periods from 1.06 to 1.79 s. Both run-up and overtopping was assessed behind the curved and straight sections of the dike. Both measurements were compared to a dike with a straight line. It was observed that convex curvatures in the longitudinal dike line cause a redirection of incident waves leading to a concentration around the center point. Measurements prove that both run-up heights and overtopping rates are higher than on the straight dike. It can be concluded that deviations from a straight longitudinal dike line have an impact on design parameters and imply uncertainties within the design approach in force. Therefore, it is recommended to consider these influencing factors for such cases.

Keywords: convex dike, longitudinal curvature, overtopping, run-up

Procedia PDF Downloads 287