Search results for: hybrid expert system
18864 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 62918863 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment
Authors: Ibrahim Ozkan
Abstract:
In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading
Procedia PDF Downloads 14518862 The Effects of Advisor Status and Time Pressure on Decision-Making in a Luggage Screening Task
Authors: Rachel Goh, Alexander McNab, Brent Alsop, David O'Hare
Abstract:
In a busy airport, the decision whether to take passengers aside and search their luggage for dangerous items can have important consequences. If an officer fails to search and stop a bag containing a dangerous object, a life-threatening incident might occur. But stopping a bag unnecessarily means that the officer might lose time searching the bag and face an angry passenger. Passengers’ bags, however, are often cluttered with personal belongings of varying shapes and sizes. It can be difficult to determine what is dangerous or not, especially if the decisions must be made quickly in cases of busy flight schedules. Additionally, the decision to search bags is often made with input from the surrounding officers on duty. This scenario raises several questions: 1) Past findings suggest that humans are more reliant on an automated aid when under time pressure in a visual search task, but does this translate to human-human reliance? 2) Are humans more likely to agree with another person if the person is assumed to be an expert or a novice in these ambiguous situations? In the present study, forty-one participants performed a simulated luggage-screening task. They were partnered with an advisor of two different statuses (expert vs. novice), but of equal accuracy (90% correct). Participants made two choices each trial: their first choice with no advisor input, and their second choice after advisor input. The second choice was made within either 2 seconds or 8 seconds; failure to do so resulted in a long time-out period. Under the 2-second time pressure, participants were more likely to disagree with their own first choice and agree with the expert advisor, regardless of whether the expert was right or wrong, but especially when the expert suggested that the bag was safe. The findings indicate a tendency for people to assume less responsibility for their decisions and defer to their partner, especially when a quick decision is required. This over-reliance on others’ opinions might have negative consequences in real life, particularly when relying on fallible human judgments. More awareness is needed regarding how a stressful environment may influence reliance on other’s opinions, and how better techniques are needed to make the best decisions under high stress and time pressure.Keywords: advisors, decision-making, time pressure, trust
Procedia PDF Downloads 17418861 Greatly Improved Dielectric Properties of Poly'vinylidene fluoride' Nanocomposites Using Ag-BaTiO₃ Hybrid Nanoparticles as Filler
Authors: K. Silakaew, P. Thongbai
Abstract:
There is an increasing need for high–permittivity polymer–matrix composites (PMC) owing to the rapid development of the electronics industry. Unfortunately, the dielectric permittivity of PMC is still too low ( < 80). Moreover, the dielectric loss tangent is usually high (tan > 0.1) when the dielectric permittivity of PMC increased. In this research work, the dielectric properties of poly(vinylidene fluoride) (PVDF)–based nanocomposites can be significantly improved by incorporating by silver–BaTiO3 (Ag–BT) ceramic hybrid nanoparticles. The Ag–BT/PVDF nanocomposites were fabricated using various volume fractions of Ag–BT hybrid nanoparticles (fAg–BT = 0–0.5). The Ag–BT/PVDF nanocomposites were characterized using several techniques. The main phase of Ag and BT can be detected by the XRD technique. The microstructure of the Ag–BT/PVDF nanocomposites was investigated to reveal the dispersion of Ag–BT hybrid nanoparticles because the dispersion state of a filler can have an effect on the dielectric properties of the nanocomposites. It was found that the filler hybrid nanoparticles were well dispersed in the PVDF matrix. The phase formation of PVDF phases was identified using the XRD and FTIR techniques. We found that the fillers can increase the polar phase of a PVDF polymer. The fabricated Ag–BT/PVDF nanocomposites are systematically characterized to explain the dielectric behavior in Ag–BT/PVDF nanocomposites. Interestingly, largely enhanced dielectric permittivity (>240) and suppressed loss tangent (tan<0.08) over a wide frequency range (102 – 105 Hz) are obtained. Notably, the dielectric permittivity is slightly dependent on temperature. The greatly enhanced dielectric permittivity was explained by the interfacial polarization between the Ag and PVDF interface, and due to a high permittivity of BT particles.Keywords: BaTiO3, PVDF, polymer composite, dielectric properties
Procedia PDF Downloads 19518860 The State Model of Corporate Governance
Authors: Asaiel Alohaly
Abstract:
A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder.Keywords: corporate governance, control, shareholders, state model
Procedia PDF Downloads 14418859 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential
Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi
Abstract:
On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.Keywords: LiCl6H2O, glassy state, RMC, HRMC
Procedia PDF Downloads 47218858 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production
Authors: Anna Crivellari, Valerio Cozzani
Abstract:
Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy
Procedia PDF Downloads 12618857 Fostering a Sense of Belonging in Hybrid Teams
Authors: Jam Harley
Abstract:
The COVID-19 epidemic accelerated the speed of change in the workplace. Overnight, several individuals shifted from co-location in an office to hybrid or remote work. The pandemic also expedited and intensified the need to address persistent leadership and management concerns, including digital transformation, remote management, leading through fast change, anxiety, and uncertainty. Nonetheless, many leaders have failed to address the problems left behind by the epidemic. In a fundamental work devoted to comprehending what constitutes a human need, Maslow reiterates similar descriptors in his explanation of belongingness as the human need to be accepted, acknowledged, respected, and appreciated by a community of other individuals. This study aims to investigate the lived experiences of dispersed hybrid team members in order to find leadership best practices that improve team performance and retention through an increased individual’s sense of belonging.Keywords: organizational change, belonging, diversity, equity
Procedia PDF Downloads 5618856 Networking the Biggest Challenge in Hybrid Cloud Deployment
Authors: Aishwarya Shekhar, Devesh Kumar Srivastava
Abstract:
Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas
Procedia PDF Downloads 42818855 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites
Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy
Abstract:
In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites.Keywords: beryl, graphene, heat treatment, mechanical properties
Procedia PDF Downloads 14518854 Impact of Charging PHEV at Different Penetration Levels on Power System Network
Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat
Abstract:
Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile
Procedia PDF Downloads 28818853 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System
Authors: S. Oladoyinbo, A. A. Tijani
Abstract:
Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor
Procedia PDF Downloads 36718852 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 36118851 Utilization of Hybrid Teaching Methods to Improve Writing Skills of Undergraduate Students
Authors: Tahira Zaman
Abstract:
The paper intends to discover the utility of hybrid teaching methods to aid undergraduate students to improve their English academic writing skills. A total of 45 undergraduate students were selected randomly from three classes from varying language abilities, with the research design of monitoring and rubrics evaluation as a means of measure. Language skills of the students were upgraded with the help of experiential learning methods using reflective writing technique, guided method in which students were merely directed to correct form of writing techniques along with self-guided method for the students to produce a library research-based article measured through a standardized rubrics provided. The progress of the students was monitored and checked through rubrics and self-evaluation and concluded that a change was observed in the students’ writing abilities.Keywords: self evaluation, hybrid, self evaluation, reflective writing
Procedia PDF Downloads 16318850 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 16618849 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage
Authors: Taiheng Zhang, Hongbin Zhao
Abstract:
Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids
Procedia PDF Downloads 12418848 Efficiently Degradation of Perfluorooctanoic Acid, an Emerging Contaminant, by a Hybrid Process of Membrane Distillation Process and Electro-Fenton
Authors: Afrouz Yousefi, Mohtada Sadrzadeh
Abstract:
The widespread presence of poly- and perfluoroalkyl substances (PFAS) poses a significant concern due to their ability to accumulate in living organisms and their persistence in the environment, thanks to their robust carbon-fluorine (C-F) bonds, which require substantial energy to break (485 kJ/mol). The prevalence of toxic PFAS compounds can be highly detrimental to ecosystems, wildlife, and human health. Ongoing efforts are dedicated to investigating methods for fully breaking down and eliminating PFAS from the environment. Among the various techniques employed, advanced oxidation processes have shown promise in completely breaking down emerging contaminants in wastewater. However, the drawback lies in the relatively slow reaction rates of these processes and the substantial energy input required, which currently impedes their widespread commercial adoption. We developed a hybrid process, comprising electro-Fenton as an advanced oxidation process and membrane distillation, to simultaneously degrade organic PFAS pollutants and extract pure water from the mixture. In this study, environmentally persistent perfluorooctanoic acid (PFOA), as an emerging contaminant, was used to study the effectiveness of the electro-Fenton/membrane distillation hybrid system. The PFOA degradation studies were conducted in two modes: electro-Fenton and electro-Fenton coupled with membrane distillation. High-performance liquid chromatography with ultraviolet detection (HPLC-UV), ion-chromatography (measuring fluoride ion concentration), total organic carbon (TOC) decay, mineralization current efficiency (MCE), and specific energy consumption (SEC) were evaluated for a single EF and hybrid EF-MD processes. In contrast to a single EF reaction, TOC decay improved significantly in the EF-MD process. Overall, the MCE of hybrid processes surpassed 100% while it remained under 50% for a single EF reaction. Calculations of specific energy consumption (SEC) demonstrated a substantial decrease of nearly one-third in energy usage when integrating the EF reaction with the MD process.Keywords: water treatment, PFAS, membrane distillation, electro-Fenton, advanced oxidation
Procedia PDF Downloads 6518847 The Bespoke ‘Hybrid Virtual Fracture Clinic’ during the COVID-19 Pandemic: A Paradigm Shift?
Authors: Anirudh Sharma
Abstract:
Introduction: The Covid-19 pandemic necessitated a change in the manner outpatient fracture clinics are conducted due to the need to reduce footfall in hospital. While studies regarding virtual fracture clinics have shown these to be useful and effective, they focus exclusively on remote consultations. However, our service was bespoke to the patient – either a face-to-face or telephone consultation depending on patient need – a ‘hybrid virtual clinic (HVC).’ We report patient satisfaction and outcomes with this novel service. Methods: Patients booked onto our fracture clinics during the first 2 weeks of national lockdown were retrospectively contacted to assess the mode of consultations (virtual, face-to-face, or hybrid), patient experience, and outcome. Patient experience was assessed using the net promoter (NPS), customer effort (CES) and customer satisfaction scores (CSS), and their likelihood of using the HVC in the absence of a pandemic. Patient outcomes were assessed using the components of the EQ5D score. Results: Of 269 possible patients, 140 patients responded to the questionnaire. Of these, 66.4% had ‘hybrid’ consultations, 27.1% had only virtual consultations, and 6.4% had only face-to-face consultations. The mean overall NPS, CES, and CSS (on a scale of 1-10) were 7.27, 7.25, and 7.37, respectively. The mean likelihood of patients using the HVC in the absence of a pandemic was 6.5/10. Patients who had ‘hybrid’ consultations showed better effort scores and greater overall satisfaction than those with virtual consultations only and also reported superior EQ5D outcomes (mean 79.27 vs. 72.7). Patients who did not require surgery reported increased satisfaction (mean 7.51 vs. 7.08) and were more likely to use the HVC in the absence of a pandemic. Conclusion: Our study indicates that a bespoke HVC has good overall patient satisfaction and outcomes and is a better format of fracture clinic service than virtual consultations alone. It may be the preferred mode for fracture clinics in similar situations in the future. Further analysis needs to be conducted in order to explore the impact on resources and clinician experience of HVC in order to appreciate this new paradigm shift.Keywords: hybrid virtual clinic, coronavirus, COVID-19, fracture clinic, remote consultation
Procedia PDF Downloads 13618846 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds
Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel
Abstract:
Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.Keywords: biomaterial, chitosan, hybrid, plasma
Procedia PDF Downloads 27618845 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks
Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani
Abstract:
Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA
Procedia PDF Downloads 48118844 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems
Authors: Atrin Barzegar, Yas Barzegar, Stefano Marrone, Francesco Bellini, Laura Verde
Abstract:
The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment
Procedia PDF Downloads 7618843 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains
Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang
Abstract:
Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment
Procedia PDF Downloads 11718842 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 49018841 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels
Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan
Abstract:
A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media
Procedia PDF Downloads 17518840 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface
Authors: Kun Huang
Abstract:
This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility
Procedia PDF Downloads 26818839 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory
Authors: Damir Latypov
Abstract:
A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory
Procedia PDF Downloads 15618838 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 10718837 Electric Propulsion System Development for High Floor Trolley Bus
Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari
Abstract:
The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle
Procedia PDF Downloads 35918836 Hybrid Control Strategy for Nine-Level Asymmetrical Cascaded H-Bridge Inverter
Authors: Bachir Belmadani, Rachid Taleb, M’hamed Helaimi
Abstract:
Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the hybrid pulse-width modulation (HPWM) strategy of a uniform step asymmetrical cascaded H-bridge nine-level Inverter (USACHB9LI). The HPWM approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HPWM controller in feeding a high power induction motor.Keywords: uniform step asymmetrical cascaded h-bridge high-level inverter, hybrid pwm, sinusoidal pwm, high power induction motor
Procedia PDF Downloads 57118835 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles
Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık
Abstract:
Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles
Procedia PDF Downloads 86