Search results for: hardness property
1796 Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment
Authors: Dipak Sonawane, Sudarshan Daga, Somesh Gupta
Abstract:
Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals.Keywords: quantitative risk assessment, hazard assessment, consequence analysis, individual risk, societal risk
Procedia PDF Downloads 801795 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures
Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov
Abstract:
Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.Keywords: multiscale modeling, permeability, texture, micro-tomography images
Procedia PDF Downloads 1831794 Precipitation Kinetics of Al-7%Mg Alloy Studied by DSC and XRD
Authors: M. Fatmi, T. Chihi, M. A. Ghebouli, B. Ghebouli
Abstract:
This work presents the experimental results of the differential scanning calorimetry (DSC), hardness measurements (Hv) and XRD analysis, for order to investigate the kinetics of precipitation phenomena in Al-7%wt. Mg alloy. In the XRD and DSC curves indicates the formation of the intermediate precipitation of β-(Al3Mg2) phase respectively. The activation energies associated with the processes have been determined according to the three models proposed by Kissinger, Ozawa, and Boswell. Consequently, the nucleation mechanism of the precipitates can be explained. These phases are confirmed by XRD analysis.Keywords: discontinuous precipitation, hardening, Al–Mg alloys, mechanical and mechatronics engineering
Procedia PDF Downloads 4121793 Risk in the South African Sectional Title Industry: An Assurance Perspective
Authors: Leandi Steenkamp
Abstract:
The sectional title industry has been a part of the property landscape in South Africa for almost half a century, and plays a significant role in addressing the housing problem in the country. Stakeholders such as owners and investors in sectional title property are in most cases not directly involved in the management thereof, and place reliance on the audited annual financial statements of bodies corporate for decision-making purposes. Although the industry seems to be highly regulated, the legislation regarding accounting and auditing of sectional title is vague and ambiguous. Furthermore, there are no industry-specific auditing and accounting standards to guide accounting and auditing practitioners in performing their work and industry financial benchmarks are not readily available. In addition, financial pressure on sectional title schemes is often very high due to the fact that some owners exercise unrealistic pressure to keep monthly levies as low as possible. All these factors have an impact on the business risk as well as audit risk of bodies corporate. Very little academic research has been undertaken on the sectional title industry in South Africa from an accounting and auditing perspective. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on uncertainties, ambiguity and confusing aspects in current legislation regarding the audit of a sectional title property that may cause or increase audit and business risk. Secondly, empirical findings of risk-related aspects from the results of interviews with three groups of body corporate role-players will be discussed. The role-players were body corporate trustee chairpersons, body corporate managing agents and accounting and auditing practitioners of bodies corporate. Specific reference will be made to business risk and audit risk. Thirdly, practical recommendations will be made on possibilities of closing the audit expectation gap, and further research opportunities in this regard will be discussed.Keywords: assurance, audit, audit risk, body corporate, corporate governance, sectional title
Procedia PDF Downloads 2671792 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces
Authors: S. Perera, T. R. Walsh, M. Solvang
Abstract:
The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface
Procedia PDF Downloads 991791 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area
Authors: Mounir Azzam, Valerie Graw, Andreas Rienow
Abstract:
The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis
Procedia PDF Downloads 871790 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer
Authors: Aparna M. Joshi
Abstract:
Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation
Procedia PDF Downloads 5571789 An Analysis of Urban Institutional Arrangements and Their Implications on Wetlands Allocation for Development Purposes: A Case of Harare, Zimbabwe
Authors: Effort M. Magoso
Abstract:
This study analyses urban institutional arrangements and their implications on allocation of wetlands for development purposes in Zimbabwe using a case study of Harare. It was driven by the need to get to the root of the current urban assault on wetlands. The study sought to analyse institutions that influence wetlands governance in Harare, to ascertain level of wetlands loss and to determine the adequacy of the legal and regulatory framework for governing wetlands. Theories of common property resources and of institutions are the paradigms that undergird this study. A qualitative research methodology was employed, while in-depth interviews, observations and document review were used to gather data. The study found out that unchecked infrastructure developments are taking place in the city’s wetlands. Urban institutional arrangements in Harare were exposed as having negative implications on the protection of wetlands. It is the key argument of this study that good institutional arrangements are priceless in the protection of commons such as wetlands. This study also recommends a new framework that has environmentalists and technocrats as the final decision maker in land allocation as the solution to protect wetlands from undue anthropogenic activities.Keywords: institutional arrangements, common property resources, wetlands, institutions
Procedia PDF Downloads 3881788 Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Abstract:
The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.Keywords: Finite element method, Functionally graded material, Porosity volume fraction, Power law
Procedia PDF Downloads 2051787 The Effect of Different Surface Cleaning Methods on Porosity Formation and Mechanical Property of AA6xxx Aluminum Gas Metal Arc Welds
Authors: Fatemeh Mirakhorli
Abstract:
Porosity is the main issue during welding of aluminum alloys, and surface cleaning has a critical influence to reduce the porosity level by removing the oxidized surface layer before fusion welding. Developing an optimum and economical surface cleaning method has an enormous benefit for aluminum welding industries to reduce costs related to repairing and repeating welds as well as increasing the mechanical properties of the joints. In this study, several mechanical and chemical surface cleaning methods were examined for butt joint welding of 2 mm thick AA6xxx alloys using ER5556 filler metal. The effects of each method on porosity formation and tensile properties are evaluated. It has been found that, compared to the conventional mechanical cleaning method, the use of chemical cleaning leads to an important reduction in porosity level even after a significant delay between cleaning and welding. The effect of the higher porosity level in the fusion zone to reduce the tensile strength of the welds is shown.Keywords: gas metal arc welding (GMAW), aluminum alloy, surface cleaning, porosity formation, mechanical property
Procedia PDF Downloads 1391786 Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer
Authors: Anika Zafiah M. Rus, Nik Normunira Mat Hassan
Abstract:
Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation.Keywords: biopolymer flexible foam, TGA, UV irradiation, vibration and damping
Procedia PDF Downloads 4661785 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice
Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes
Abstract:
Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics
Procedia PDF Downloads 1601784 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive
Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu
Abstract:
Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings
Procedia PDF Downloads 1261783 Effect of Treated Grey Water on Bacterial Concrete
Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum
Abstract:
Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater
Procedia PDF Downloads 991782 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents
Authors: Shahid-ul-Islam, Faqeer Mohammad
Abstract:
The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.Keywords: annatto, antimicrobial agents, natural dyes, green textiles
Procedia PDF Downloads 3181781 Analysis and Suggestion on Patent Protection in Shanghai, China
Authors: Yuhong Niu, Na Li, Chunlin Jin, Hansheng Ding
Abstract:
The study reviewed all types of patents applied by Shanghai health system to analyze how patent development in China from the year of 1990 to 2012. The study used quantitative and comparative analysis to investigate the change and trends of patent numbers, patent types, patent claims, forward citations, patent life, patent transactions, etc. Results reflected an obviously increased numbers of invention patents, applications, and authorizations and short-life patents, but the ratio of invention patents represented an up and down change. Forward citations and transactions ratio always kept at a low level. The results meant that the protection of intellectual property in the Shanghai health sector had made great progress and lots of positive changes due to incentive policies by local government. However, the low-quality patents, at the same time, increased rapidly. Thus, in the future, it is suggested that the quality management should be strengthened, and invents should be estimated before patent application. It is also suggested that the incentives for intellectual property should be optimized to promote the comprehensive improvement of patent quantity and quality.Keywords: patent claims, forward citations, patent life, patent transactions ratio
Procedia PDF Downloads 1611780 Grain Refinement of Al-7Si-0.4Mg Alloy by Combination of Al-Ti-B and Mg-Al2Ca Mater Alloys and Their Effects on Tensile Property
Authors: Young-Ok Yoon, Su-Yeon Lee, Seong-Ho Ha, Gil-Yong Yeom, Bong-Hwan Kim, Hyun-Kyu Lim, Shae K. Kim
Abstract:
Al-7Si-0.4Mg alloy (designated A356) is widely used in the automotive and aerospace industries as structural components due to an excellent combination of castability and mechanical properties. Grain refinement has a significant effect on the mechanical properties of castings, mainly since the distribution of secondary phase is changed. As a grain refiner, the Al-Ti-B master alloys containing TiAl3 and TiB2 particles have been widely used in Al foundries. The Mg loss and Mg based inclusion formation by the strong affinity of Mg to oxygen in the melting process of Mg contained alloys have been an issue. This can be significantly improved only by Mg+Al2Ca master alloy as an alloying element instead of pure Mg. Moreover, the eutectic Si modification and grain refinement is simultaneously obtained because Al2Ca behaves as Ca, a typical Si modifier. The present study is focused on the combined effects of Mg+Al2Ca and Al-Ti-B master alloys on the grain refiment of Al-7Si-0.4Mg alloy and their proper ratio for the optimum effect. The aim of this study, therefore, is to investigate the change of the microstructure in Al-7Si-0.4Mg alloy with different ratios of Ti and Al2Ca (detected Ca content) and their effects on the tensile property. The distribution and morphology of the secondary phases by the grain refinement will be discussed.Keywords: Al-7Si-0.4Mg alloy, Al2Ca, Al-Ti-B alloy, grain refinement
Procedia PDF Downloads 4351779 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method
Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn
Abstract:
The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry
Procedia PDF Downloads 2531778 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 1461777 On the Cyclic Property of Groups of Prime Order
Authors: Ying Yi Wu
Abstract:
The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.Keywords: group theory, finite groups, cyclic groups, prime order, classification.
Procedia PDF Downloads 841776 Street Naming and Property Addressing Systems for New Development in Ghana: A Case Study of Nkawkaw in the Kwahu West Municipality
Authors: Jonathan Nii Laryea Ashong, Samuel Opare
Abstract:
Current sustainable cities debate focuses on the formidable problems for the Ghana’s largest urban and rural agglomerations, the majority of all urban dwellers continue to reside in far smaller urban settlements. It is estimated that by year 2030, almost all the Ghana’s population growth will likely be intense in urban areas including Nkawkaw in the Kwahu West Municipality of Ghana. Nkawkaw is situated on the road and former railway between Accra and Kumasi, and lies about halfway between these cities. It is also connected by road to Koforidua and Konongo. According to the 2013 census, Nkawkaw has a settlement population of 61,785. Many international agencies, government and private architectures’ are been asked to adequately recognize the naming of streets and property addressing system among the 170 districts across Ghana. The naming of streets and numbering of properties is to assist Metropolitan, Municipal and District Assemblies to manage the processes for establishing coherent address system nationally. Street addressing in the Nkawkaw in the Kwahu West Municipality which makes it possible to identify the location of a parcel of land, public places or dwellings on the ground based on system of names and numbers, yet agreement on how to progress towards it remains elusive. Therefore, reliable and effective development control for proper street naming and property addressing systems are required. The Intelligent Addressing (IA) technology from the UK is being used to name streets and properties in Ghana. The intelligent addressing employs the technique of unique property Reference Number and the unique street reference number which would transform national security and other service providers’ ability to respond rapidly to distress calls. Where name change is warranted following the review of existing streets names, the Physical Planning Department (PPDs) shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the provisions of the policy and the processes outlined for street name change for new development. In the case of existing streets with no names, the respective PPDs shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the requirements set out in municipality. Naming of access ways proposed for new developments shall be done at the time of developing sector layouts (subdivision maps) for the designated areas. In the case of private gated developments, the developer shall submit the names of the access ways as part of the plan and other documentation forwarded to the Municipal District Assembly for approval. The names shall be reviewed first by the PPD to avoid duplication and to ensure conformity to the required standards before submission to the Assembly’s Statutory Planning Committee for approval. The Kwahu West Municipality is supposed to be self-sustaining, providing basic services to inhabitants as a result of proper planning layouts, street naming and property addressing system that prevail in the area. The implications of these future projections are discussed.Keywords: Nkawkaw, Kwahu west municipality, street naming, property, addressing system
Procedia PDF Downloads 5441775 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites
Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt
Abstract:
Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.Keywords: copper based composites, mechanical properties, wear properties, microstructure
Procedia PDF Downloads 3641774 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding
Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha
Abstract:
The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits
Procedia PDF Downloads 3411773 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries
Authors: M. G. Cattaneo
Abstract:
The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.Keywords: global health, global justice, patent law reform, access to drugs
Procedia PDF Downloads 2461772 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites
Authors: B. Yaman, G. Acikbas, N. Calis Acikbas
Abstract:
Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties
Procedia PDF Downloads 1951771 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers
Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić
Abstract:
The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.Keywords: crackers, dietary fibers, rheology, sensory properties
Procedia PDF Downloads 3231770 Ripening Conditions Suitable for Marketing of Winter Squash ‘Bochang’
Authors: Do Su Park, Sang Jun Park, Cheon Soon Jeong
Abstract:
This study was performed in order to investigate the optimum ripening conditions for the marketing of Squash. Research sample 'Bochang' was grown at Hongcheonin in Gangwon province in August 2014. Ripening the samples were stored under the conditions of 25℃, 30℃, and 35℃ with the humidity RH70 ± 5%. They were checked every 3 days for 21 days. The respiration rate, water loss, hardness, coloration, the contents of soluble solids, starch, total sugar were evaluated after storage. Respiration rate was reduced in all treatments with longer storage period. Water loss was increased in the higher temperature. The 13% water loss was found at 35℃ on 21st storage day. The store initially 25℃ and 30℃ Hardness 47N and the ripening 21 days decreased slightly. On the other hand, in the case of 35℃ showed a large reduction than 25℃ and 30℃. Soluble solid contents were increased with longer ripening period. 30℃ and 35℃ was highest ripening 15 days. In the case of 25℃, it was highest on 21th day. The higher the temperature, the higher the soluble solids content are. 25℃ and 30℃ Coloration was increased rapidly until the ripening 12 days. In case of 35℃, continued increase up to 21 days. 25℃ and 30℃ showed no differences. Meanwhile, in case of 35℃, appearance quality was reduced in Occurrence of yellowing phenomenon of pericarp occurs from after ripening for 9 days. The coloration of fruit flesh is increase until after ripening for 9 days and decrease from after ripening for 9 days. There was no significant difference depending on the conditions of temperature. The higher the temperature, the lower the content of the starch. In case of 30℃ and 35℃, was reduced with longer storage period. 25℃ was minimal content change. Total sugar was increased in all treatments with longer storage period. The higher the temperature, the higher the amount of total sugar content is. Therefore, at 25℃ for 18-21 days and at 30℃ for 12-15 days is suitable for ripening.Keywords: marketing, ripening, temperature, winter squash
Procedia PDF Downloads 5981769 Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials
Authors: Afshin Zohdi, Selçuk Özdemir, Mustafa Aksoy
Abstract:
Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies.Keywords: WC-Co, cold forging dies, pack boriding, surface hardness, wear resistance, microhardness, diffusion coefficient, scanning electron microscopy, energy-dispersive X-ray spectroscopy
Procedia PDF Downloads 731768 Chelating Effect of Black Tea Extract Compared to Citric Acid in the Process of the Oxidation of Sunflower, Canola, Olive, and Tallow Oils
Authors: Yousef Naserzadeh, Niloufar Mahmoudi
Abstract:
Oxidation resistance is one of the important parameters in maintaining the quality of olive oil during its storage. Ensuring the stability of the quality of olive oil is one of the important concerns of the producers and consumers. Prooxidants such as iron and copper accelerate the oxidation reaction, and also anti-oxidants and chelating compounds delay it. In this study, chelating effect of tea extract which contains significant amounts of tannic acid is investigated in comparison with citric acid. To do it, 0.1 ppm copper was added to these four kinds of oil, sunflower, olive, canola, and tallow, and then chelating effect of citric acid (0.01%), tannic acid (0.01%) and tea extract (0.1%) were measured by adding to this composition. To this end, the resistance time of the oils against oxidation was measured at 120 °C and an air flow of 20 liters per hour. And the value of peroxide was measured by oven test in six periods of 24 hours at 105 °C. The results showed that citric acid, tannic acid and tea extract had chelating property and increased the resistance time of the studied oils. As a result, considering chelating property and increasing resistance of oil, tannic acid showed better effect than tea extract and tea extract had better effect than citric acid.Keywords: tannic acid, chelate, edible oils, black tea extract, TBHQ
Procedia PDF Downloads 2031767 Hydroxyapatite from Biowaste for the Reinforcement of Polymer
Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam
Abstract:
Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: biomaterial, biopolymer, bone, hydroxyapatite
Procedia PDF Downloads 321