Search results for: ground fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2483

Search results for: ground fault

2033 Seismic Response Control of 20-Storey Benchmark Building Using True Negative Stiffness Device

Authors: Asim Qureshi, R. S. Jangid

Abstract:

Seismic response control of structures is generally achieved by using control devices which either dissipate the input energy or modify the dynamic properties of structure.In this paper, the response of a 20-storey benchmark building supplemented by viscous dampers and Negative Stiffness Device (NSD) is assessed by numerical simulations using the Newmark-beta method. True negative stiffness is an adaptive passive device which assists the motion unlike positive stiffness. The structure used in this study is subjected to four standard ground motions varying from moderate to severe, near fault to far-field earthquakes. The objective of the present study is to show the effectiveness of the adaptive negative stiffness device (NSD and passive dampers together) relative to passive dampers alone. This is done by comparing the responses of the above uncontrolled structure (i.e., without any device) with the structure having passive dampers only and also with the structure supplemented with adaptive negative stiffness device. Various performance indices, top floor displacement, top floor acceleration and inter-storey drifts are used as comparison parameters. It is found that NSD together with passive dampers is quite effective in reducing the response of aforementioned structure relative to structure without any device or passive dampers only. Base shear and acceleration is reduced significantly by incorporating NSD at the cost of increased inter-storey drifts which can be compensated using the passive dampers.

Keywords: adaptive negative stiffness device, apparent yielding, NSD, passive dampers

Procedia PDF Downloads 405
2032 Study and Improvement of the Quality of a Production Line

Authors: S. Bouchami, M.N. Lakhoua

Abstract:

The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.

Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method

Procedia PDF Downloads 120
2031 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 71
2030 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 512
2029 Evaluation of Properties of Alkali Activated Slag Concrete Blended with Polypropylene Shredding and Admixture

Authors: Jagannath Prasad Tegar, Zeeshan Ahmad

Abstract:

The Ordinary Portland Cement (OPC) is a major constituent of concrete, which is being used extensively since last half century. The production of cement is impacting not only environment alone, but depleting natural materials. During the past 3 decades, the scholars have carried out studies and researches to explore the supplementary cementatious materials such as Ground granulated Blast furnace slag (GGBFS), silica fumes (SF), metakaolin or fly ash (FA). This has contributed towards improved cementatious materials which are being used in construction, but not the way it is supposed to be. The alkali activated slag concrete is another innovation which has constituents of cementatious materials like Ground Granuled Blast Furnace Slag (GGBFS), Fly Ash (FA), Silica Fumes (SF) or Metakaolin. Alkaline activators like Sodium Silicate (Na₂SiO₃) and Sodium Hydroxide (NaOH) is utilized. In view of evaluating properties of alkali activated slag concrete blended with polypropylene shredding and accelerator, research study is being carried out. This research study is proposed to evaluate the effect of polypropylene shredding and accelerating admixture on mechanical properties of alkali-activated slag concrete. The mechanical properties include the compressive strength, splitting tensile strength and workability. The outcomes of this research are matched with the hypothesis and it is found that 27% of cement can be replaced with the ground granulated blast furnace slag (GGBFS) and for split tensile strength 20% replacement is achieved. Overall it is found that 20% of cement can be replaced with ground granulated blast furnace slag. The tests conducted in the laboratory for evaluating properties such as compressive strength test, split tensile strength test, and slump cone test. On the aspect of cost, it is substantially benefitted.

Keywords: ordinary Portland cement, activated slag concrete, ground granule blast furnace slag, fly ash, silica fumes

Procedia PDF Downloads 162
2028 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN

Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud

Abstract:

Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.

Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design

Procedia PDF Downloads 449
2027 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: airborne laser scanning, digital terrain models, filtering, forested areas

Procedia PDF Downloads 124
2026 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 145
2025 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method

Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere

Abstract:

The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.

Keywords: finite element method, convection, buried cables, steady-state rating

Procedia PDF Downloads 114
2024 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.

Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer

Procedia PDF Downloads 264
2023 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 369
2022 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing

Authors: Jason R. King, Hugh H. T. Liu

Abstract:

This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.

Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing

Procedia PDF Downloads 318
2021 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 486
2020 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 161
2019 Effects of GRF on CMJ in Different Wooden Surface Systems

Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen

Abstract:

Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.

Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad

Procedia PDF Downloads 420
2018 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets

Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham

Abstract:

Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.

Keywords: bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse

Procedia PDF Downloads 147
2017 Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area.

Keywords: chaura thrust, out-of-sequence thrust, himachal pradesh, geological setting, tectonic framework, rock formations, structural characteristics, stress interactions, fault interactions, geological implications, seismic hazard assessment, geological hazards, future research, mitigation strategies.

Procedia PDF Downloads 59
2016 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 386
2015 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach

Authors: Adel A. Ghobbar

Abstract:

The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.

Keywords: supportability, no fault found, FMEA, early failure, availability, operational reliability, predictive model

Procedia PDF Downloads 104
2014 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 309
2013 Rock Slope Stabilization and Protection for Roads and Multi-Storey Structures in Jabal Omar, Saudi Arabia

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Abdelazim Ibrahim

Abstract:

Jabal Omar is located in the western side of Makkah city in Saudi Arabia. The proposed Jabal Omar Development project includes several multi-storey buildings, roads, bridges and below ground structures founded at various depths. In this study, geological mapping and site inspection which covered pre-selected areas were carried out within the easily accessed parts. Geological features; including rock types, structures, degree of weathering, and geotechnical hazards were observed and analyzed with specified software and also were documented in form of photographs. The presence of joints and fractures in the area made the rock blocks small and weak. The site is full of jointing; it was observed that, the northern side consists of 3 to 4 jointing systems with 2 random fractures associated with dykes. The southern part is affected by 2 to 3 jointing systems with minor fault and shear zones. From the field measurements and observations, it was concluded that, the Jabal Omar intruded by andesitic and basaltic dykes of different thickness and orientation. These dykes made the outcrop weak, highly deformed and made the rock masses sensitive to weathering.

Keywords: rock, slope, stabilization, protection, Makkah

Procedia PDF Downloads 787
2012 Design and Modeling of Light Duty Trencher

Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu

Abstract:

From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.

Keywords: hydraulics, modelling, trenching, ditch

Procedia PDF Downloads 196
2011 Insights into Kinematics and Basin Development through Palinspastic Reconstructions in Pull-Apart Basin Sunda Strait: Implication for the Opportunity of Hydrocarbon Exploration in Fore-Arc Basin, Western Indonesia

Authors: Alfathony Krisnabudhi, Syahli Reza Ananda, M. Edo Marshal, M. Maaruf Mukti

Abstract:

This study investigates the kinematics and basin development of pull-apart basin Sunda Strait based on palinspastic reconstructions of new acquired seismic reflection data to unravel hydrocarbon exploration opportunity in frontier area, fore-arc basin western Indonesia. We use more than 780 km seismic reflection data that cover whole basin. Structural patterns in Sunda Strait are dominated by northwest-southeast trending planar and listric-normal faults which appear to be graben and half-graben system. The main depocentre of this basin is East Semangko graben and West Semangko graben that are formed by overstepping of Sumatra Fault Zone and Ujungkulon Fault Zone. In father east, another depocentre is recognized as the Krakatau graben. The kinematic evolution started in Middle Miocene, characterized by the initiation of basement faulting with 0% to 7.00% extension. Deposition stratigraphic unit 1 and unit 2 started at 7.00% to 10.00% extension in Late Miocene and recognized as pre-transtensional deposit. The Plio-Pleistocene unit 3 and 4 were deposited as syn-transtensional deposit with 10.00% to 17.00% extension contemporaneously with the initiation of uplift NW-SE trending ridges due to the evolution of cross-basin fault in central basin and the development of en-echelon basin margin in a transtensional system. The control of sedimentation rate and basin subsidence cause the Neogene sediment to be very thick. We suggest that both controls allow thermal and pressure to generate hydrocarbon habitats in the pre-transtensional deposits. It is reinforced by stable kinematic evolution and interpretation of the deposition environment of pre-transtensional deposits that are deposited in the marine environment.

Keywords: kinematics, palinspastic, Sunda Strait, hydrocarbon exploration, fore-arc basin

Procedia PDF Downloads 158
2010 Unmanned Systems in Urban Areas

Authors: Abdullah Beyazkurk, Onur Ozdemir

Abstract:

The evolution of warfare has been affected from technological developments to a large extent. Another important factor that affected the evolution of warfare is the space. Technological developments became cornerstones for the organization of the forces on the field, while space of the battlefield gained importance with the introduction of urban areas as 'battlefields'. The use of urban areas as battlefields increased the casualty, while technological developments began to play a remedial role. Thus, the unmanned systems drew attention as the remedy. Today's widely used unmanned aerial vehicles have great effects on the operations. On the other hand, with the increasing urbanization, and the wide use of urban areas as battlefields make it a necessity to benefit from unmanned systems on the ground as well. This study focuses on the use of unmanned aerial systems as well as unmanned ground systems in urban warfare, with regards to their performance and cost affectivity. The study defends that the use of unmanned vehicles will be remedial for increasing casualty rates, while their precision and superhuman capacity will manifest the performance advantage. The findings of this study will help modern armies focus on unmanned systems, especially for the urban, anti-terror, or counter insurgency operations.

Keywords: technology, warfare, urban warfare, unmanned systems, unmanned ground vehicles, unmanned aerial vehicles

Procedia PDF Downloads 330
2009 Model Based Fault Diagnostic Approach for Limit Switches

Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak

Abstract:

The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.

Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space

Procedia PDF Downloads 586
2008 Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring

Authors: M. Abou Al-alaa, H. A. Elsadek, E. A. Abdallah, E. A. Hashish

Abstract:

A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems.

Keywords: microstrip patch antenna, reconfigurable antenna, frequency reconfigurability, polarization reconfigurability, parasitic square ring, linear polarization, circular polarization

Procedia PDF Downloads 508
2007 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground

Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech

Abstract:

Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.

Keywords: center of mass, perturbation, posture, uneven ground, walking

Procedia PDF Downloads 156
2006 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach

Abstract:

This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: dual-band antenna, fractal antenna, GPS band, modified ground structure, sierpinski triangle, WiMAX band

Procedia PDF Downloads 428
2005 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India

Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya

Abstract:

The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.

Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall

Procedia PDF Downloads 276
2004 Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect

Authors: K. Dhanalakshmi, N. Deepak, E. Manikandan, S. Kanagaraj, M. Sulthan Ariff Rahman, P. Chilambarasan C. Abhimanyu, C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine.

Keywords: boundary layer blockage, chord dominated ground effect, external flow choking, WIG effect

Procedia PDF Downloads 247