Search results for: error prevention
3005 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 2953004 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 3983003 Lexical-Semantic Processing by Chinese as a Second Language Learners
Authors: Yi-Hsiu Lai
Abstract:
The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects
Procedia PDF Downloads 4603002 Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW
Authors: Muhammad Ilyas, Awais Khan, Syed Ali Raza Shah
Abstract:
DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor.Keywords: DC motor, labview, proportional integral derivative control, position tracking, speed tracking
Procedia PDF Downloads 1033001 Signal Processing Techniques for Adaptive Beamforming with Robustness
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.Keywords: adaptive beamforming, robustness, signal blocking, steering angle error
Procedia PDF Downloads 1223000 Anti-Scale Magnetic Method as a Prevention Method for Calcium Carbonate Scaling
Authors: Maha Salman, Gada Al-Nuwaibit
Abstract:
The effect of anti-scale magnetic method (AMM) in retarding scaling deposition is confirmed by many researchers, to result in new crystal morphology, the crystal which has the tendency to remain suspended more than precipitated. AMM is considered as an economic method when compared to other common methods used for scale prevention in desalination plant as acid treatment and addition of antiscalant. The current project was initiated to evaluate the effectiveness of AMM in preventing calcium carbonate scaling. The AMM was tested at different flow velocities (1.0, 0.5, 0.3, 0.1, and 0.003 m/s), different operating temperatures (50, 70, and 90°C), different feed pH and different magnetic field strength. The results showed that AMM was effective in retarding calcium carbonate scaling deposition, and the performance of AMM depends strongly on the flow velocity. The scaling retention time was found to be affected by the operating temperatures, flow velocity, and magnetic strength (MS), and in general, it was found that as the operating temperatures increased the effectiveness of the AMM in retarding calcium carbonate (CaCO₃) scaling increased.Keywords: magnetic treatment, field strength, flow velocity, magnetic scale retention time
Procedia PDF Downloads 3762999 Communication Training about Depression and Suicide Prevention for Pharmacists: A Hungarian Pilot Study
Authors: Mónika Ditta Tóth, Ádám Fritz, Balázs Hankó, György Purebl
Abstract:
Communication training about depression and suicide prevention for pharmacists – A Hungarian pilot study Mónika Ditta Tóth1, Ádám Fritz2, Balázs Hankó2, György Purebl1 1: Semmelweis University, Institute of Behavioural Sciences 2: Semmelweis University, University Pharmacy Department of Pharmacy Administration Background: Suicide rates in Hungary have been one of the highest in the European Union. Depression is one of the main risk factors for suicide and recognizing and treating depression is an effective way to prevent suicidal behaviour. In their daily practice, pharmacists meet patients with high risk of mental health problems. Therefore they have a key role in the prevention of depression and suicide. Aim: The main aim of this study is to raise pharmacists’ awareness about depression and suicide to enable better recognation of verbal and non-verbal signs of these deseases. Another important objective is to reduce their stigma about depression and increase their confidence in communication with depressed and/or suicidal patients. Methods: A 3-hour communication workshop has been delivered in this pilot study about the reasons, trigger factors, verbal and non-verbal signs of depression and suicide. The training includes communication techniques which have been developed to patients needs, as well as role-playing scenarios. Depression Stigma and Morris Confidence Scales were applied before, after and 6 weeks following the training. The results of the training group are then compared with two of the following pharmacist groups: 1. written material only (N=15), 2. no material (N=15). Results: One-way ANOVA revealed significant differences in the training group regarding the level of confidence in treating and communicating with patients with depression and/or suicide following the training, and after 6 weeks (F(2, 24)= 7,135, p=,004; baseline: 20,37, after training: 30,00, follow up: 27,66). After the 3-hour workshop the personal stigma about depression decreased (baselin: 19,75 after training: 17,00, p=0,075) in the training group (N=9), whilst the perceived stigma did not change (before: 33.54, after: 33,44, p=NS). Trainees assessed the workshop as ‘useful’ and ‘gap filling’. No significant differences was found in the group of pharmacisists who got written material only. Conclusions: Despite the high rates of depression and suicide in Hungary, pharmacists do not receive lectures or seminars about mental health during their university studies. Such half-day workshops could fill this gap and give practical help to recognize and communicate with depressed and/or suicidal patients in a more effective way. This way pharmacists, as community gate-keepers, could contribute to a more effective suicide prevention program in Hungary.Keywords: communication training, pharmacists, depression, suicide
Procedia PDF Downloads 1852998 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 1352997 Parental Awareness and Willingness to Vaccinate Adolescent Daughters against Human Papilloma Virus for Cervical Cancer Prevention in Eastern Region of Kenya: Towards Affirmative Action
Authors: Jacinta Musyoka, Wesley Too
Abstract:
Cervical cancer is the second leading cause of cancer-related deaths in Kenya and the second most common cancer among women, yet preventable following prevention strategies put in place, which includes vaccination with Human Papilloma Virus Vaccine (HPPV) among the young adolescent girls. Kenya has the highest burden of cervical cancer and the leading cause of death among women of reproductive age and is a known frequent type of cancer amongst women. This is expected to double by 2025 if the necessary steps are not taken, which include vaccinating girls between the ages of 9 and 14 and screening women. Parental decision is critical in ensuring that their daughters receive this vaccine. Hence this study sought to establish parental willingness and factors associate with the acceptability to vaccine adolescent daughters against the human papilloma virus for cervical cancer prevention in Machakos County, Eastern Region of Kenya. Method: Cross-sectional study design utilizing a mixed methods approach was used to collect data from Nguluni Health Centre in Machakos County; Matungulu sub-county, Kenya. This study targeted all parents of adolescent girls seeking health care services in the Matungulu sub-county area who were aged 18 years and above. A total of 220 parents with adolescent girls aged 10-14 years were enrolled into the study after informed consent were sought. All ethical considerations were observed. Quantitative data were analyzed using Multivariate regression analysis, and thematic analysis was used for qualitative data related to perceptions of parents on HPVV. Results, conclusions, and recommendations- ongoing. We expect to report findings and articulate contributions based on the study findings in due course before October 2022Keywords: adolescents, human papilloma virus, kenya, parents
Procedia PDF Downloads 1082996 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins
Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier
Abstract:
Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.Keywords: environmental sustainability, optimization, real time control, storm water management
Procedia PDF Downloads 1752995 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 2702994 Comparison between Some of Robust Regression Methods with OLS Method with Application
Authors: Sizar Abed Mohammed, Zahraa Ghazi Sadeeq
Abstract:
The use of the classic method, least squares (OLS) to estimate the linear regression parameters, when they are available assumptions, and capabilities that have good characteristics, such as impartiality, minimum variance, consistency, and so on. The development of alternative statistical techniques to estimate the parameters, when the data are contaminated with outliers. These are powerful methods (or resistance). In this paper, three of robust methods are studied, which are: Maximum likelihood type estimate M-estimator, Modified Maximum likelihood type estimate MM-estimator and Least Trimmed Squares LTS-estimator, and their results are compared with OLS method. These methods applied to real data taken from Duhok company for manufacturing furniture, the obtained results compared by using the criteria: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Sum of Absolute Error (MSAE). Important conclusions that this study came up with are: a number of typical values detected by using four methods in the furniture line and very close to the data. This refers to the fact that close to the normal distribution of standard errors, but typical values in the doors line data, using OLS less than that detected by the powerful ways. This means that the standard errors of the distribution are far from normal departure. Another important conclusion is that the estimated values of the parameters by using the lifeline is very far from the estimated values using powerful methods for line doors, gave LTS- destined better results using standard MSE, and gave the M- estimator better results using standard MAPE. Moreover, we noticed that using standard MSAE, and MM- estimator is better. The programs S-plus (version 8.0, professional 2007), Minitab (version 13.2) and SPSS (version 17) are used to analyze the data.Keywords: Robest, LTS, M estimate, MSE
Procedia PDF Downloads 2312993 Anomalies of Visual Perceptual Skills Amongst School Children in Foundation Phase in Olievenhoutbosch, Gauteng Province, South Africa
Authors: Maria Bonolo Mathevula
Abstract:
Background: Children are important members of communities playing major role in the future of any given country (Pera, Fails, Gelsomini, &Garzotto, 2018). Visual Perceptual Skills (VPSs) in children are important health aspect of early childhood development through the Foundation Phases in school. Subsequently, children should undergo visual screening before commencement of schooling for early diagnosis ofVPSs anomalies because the primary role of VPSs is to capacitate children with academic performance in general. Aim : The aim of this study was to determine the anomalies of visual VPSs amongst school children in Foundation Phase. The study’s objectives were to determine the prevalence of VPSs anomalies amongst school children in Foundation Phase; Determine the relationship between children’s academic and VPSs anomalies; and to investigate the relationship between VPSs anomalies and refractive error. Methodology: This study was a mixed method whereby triangulated qualitative (interviews) and quantitative (questionnaire and clinical data) was used. This was, therefore, descriptive by nature. The study’s target population was school children in Foundation Phase. The study followed purposive sampling method. School children in Foundation Phase were purposively sampled to form part of this study provided their parents have given a signed the consent. Data was collected by the use of standardized interviews; questionnaire; clinical data card, and TVPS standard data card. Results: Although the study is still ongoing, the preliminary study outcome based on data collected from one of the Foundation Phases have suggested the following:While VPSs anomalies is not prevalent, it, however, have indirect relationship with children’s academic performance in Foundation phase; Notably, VPSs anomalies and refractive error are directly related since majority of children with refractive error, specifically compound hyperopic astigmatism, failed most subtests of TVPS standard tests. Conclusion: Based on the study’s preliminary findings, it was clear that optometrists still have a lot to do in as far as researching on VPSs is concerned. Furthermore, the researcher recommends that optometrist, as the primary healthcare professionals, should also conduct the school-readiness pre-assessment on children before commencement of their grades in Foundation phase.Keywords: foundation phase, visual perceptual skills, school children, refractive error
Procedia PDF Downloads 1002992 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller
Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland
Abstract:
This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace
Procedia PDF Downloads 3362991 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 1902990 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners
Authors: Mohammad J. Rezai, Fereshteh Davarpanah
Abstract:
Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.Keywords: collocational errors, lexical errors, Persian EFL learners, semantic errors
Procedia PDF Downloads 1402989 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo
Procedia PDF Downloads 2582988 Development of a Delivery System for Statin Targeted Spray is a Breakthrough Therapy in Alzheimer’s Prevention
Authors: Fakhr Eddin Alnaal, Angela Dahdal, Duaa Aladib, Sabeen Ibrahim, Ibrahim Ghoraibi, Bissan Ahmed
Abstract:
Dementia is one of the diseases which had several stages and Alzheimer’s term was selected in respect for the first doctor Alzheimer who defined the first symptoms of this diseases in a woman whom was well treated by him. The fact that this is a type of a silent disease on which you have a long-term process of neurological degradation and suddenly gives symptoms which are most often irreversible, on clinical level likely we can consider it as a malignancy, one in terms of that it is sudden shocking irreversible and on the level of behavior and some mortality beside the lack of early detection tools for diagnosis. Therefore, the goal of our project is to test the concept of the ability of Statin in prevention of such disease and we investigated that both on experimental level and most importantly on clinical one, the clinical part was performed in a recognized house of aged people who had accidently a high cholesterol and were for years given Statin to treat that elevation, however after the symptoms of Alzheimer’s appeared and when diagnosed, they were well treated and rapidly recovered compared to Alzheimer’s patients in the same house who did not receive Statin had a mild improvement in their symptoms after the therapy, on the other hand we confirmed such observation by a well-organized experimental work.Keywords: Alzheimer's, dementia, silent disease, statin
Procedia PDF Downloads 1312987 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 3212986 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen
Abstract:
After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers
Procedia PDF Downloads 1392985 Lived Experiences and Perspectives of Adult Survivors of Incest-Related Childhood Sexual Abuse
Authors: Varsha Puri, Sharon Hudson, Ian Kim
Abstract:
Background: Incest-related childhood sexual abuse (IRCSA) is challenging to study due to the shame and secrecy experienced by its survivors. Ramifications of IRCSA worsen when it is unidentified, and interventions are not made. IRCSA perspectives are essential for future prevention and intervention strategies. However, there is limited understanding of this population’s experiences, perspectives, and long-term struggles. To date, research for IRCSA has utilized data from treatment programs and qualitative research with cohorts of 10-20 people, much of the data is from 10-40 years prior. Methods. In June 2018, an anonymous online survey was posted to multiple social media sites (e.g., Facebook IRCSA groups) and sexual abuse resource sites. Survey responses were collected for a year. The survey collected non-identifying demographics, IRCSA experiences, and outcomes data. Results: We obtained 1310 completed surveys. Demographics of all ages, racial backgrounds, financial backgrounds, and genders were obtained; the majority identified as white (81%) and female (76%). Childhood sexual abuse (CSA) started before the age of 6 in 49% and was endured for more than one year in 84% of respondents, and 39% reported ten or more years of abuse. CSA by multiple perpetrators occurred in 58%, while 8% had ten or more perpetrators. CSA by perpetrators under 21 years old was reported by 46%. Female perpetrators were reported by 28% of respondents. Fathers were the highest reported sexual abusers at 60%, and mothers were reported at 17%. Only 16% reported that at least one of their perpetrators was prosecuted for sexual abuse of a minor. Respondents confirmed that 54% of the time, they informed an adult of the abuse; only 2% agreed that “an intervention was made by the family that protected me.” A majority reported that IRCSA has negatively impacted their intimate/sexual relationships (96%) and mental health (96%). A majority reported negative impacts on biological family relationships (88%), physical health (73%), finances (59%), educational achievement (57%), and employment (56%). When asked about suffering from addiction, 85% of respondents answered yes. Prevention strategies selected most by respondents include early school education around CSA prevention (67%), removing the statute of limitations for reporting CSA (69%), and improved laws protecting IRCSA survivors (63%). Conclusion: The data document that IRCSA can be pervasive, and the dearth of intervention and support for survivors have major lasting impacts. Survivors have a unique and valuable perspective on what interventions are needed to prevent IRCSA and support survivors; their voice has long been unheard in crafting prevention and intervention policies and services. These results thus provide an important call to action from these critical stakeholders. Pediatricians should recognize that perpetrators can be pediatric patients, women, and parents. Pediatricians can advocate for more early CSA prevention education and policy changes that remove the statute of limitations for reporting CSA.Keywords: incest, childhood sexual abuse, incest-related childhood sexual abuse, incest survivor
Procedia PDF Downloads 942984 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach
Authors: Uyi Kizito Ehigiamusoe
Abstract:
The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.Keywords: economic growth, investments, money market, money market challenges, money market instruments
Procedia PDF Downloads 3422983 Managing the Baltic Sea Region Resilience: Prevention, Treatment Actions and Circular Economy
Authors: J. Burlakovs, Y. Jani, L. Grinberga, M. Kriipsalu, O. Anne, I. Grinfelde, W. Hogland
Abstract:
The worldwide future sustainable economies are oriented towards the sea: the maritime economy is becoming one of the strongest driving forces in many regions as population growth is the highest in coastal areas. For hundreds of years sea resources were depleted unsustainably by fishing, mining, transportation, tourism, and waste. European Sustainable Development Strategy is identifying and developing actions to enable the EU to achieve a continuous, long-term improvement of the quality of life through the creation of sustainable communities. The aim of this paper is to provide insight in Baltic Sea Region case studies on implemented actions on tourism industry waste and beach wrack management in coastal areas, hazardous contaminants and plastic flow treatment from waste, wastewaters and stormwaters. These projects mentioned in study promote successful prevention of contaminant flows to the sea environments and provide perspectives for creation of valuable new products from residuals for future circular economy are the step forward to green innovation winning streak.Keywords: resilience, hazardous waste, phytoremediation, water management, circular economy
Procedia PDF Downloads 1722982 Modernization of the Economic Price Adjustment Software
Authors: Roger L. Goodwin
Abstract:
The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. In mid to late 1990, much research went into changes to the CPI by a Congressional Advisory Committee. One thing can be said from the research is that, aside from there are alternative estimators for the CPI; any fundamental change to the CPI will affect many government programs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for long-term contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures
Procedia PDF Downloads 3172981 Soil Stress State under Tractive Tire and Compaction Model
Authors: Prathuang Usaborisut, Dithaporn Thungsotanon
Abstract:
Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.Keywords: draft force, soil compaction model, stress state, tractive tire
Procedia PDF Downloads 3502980 Ethical Considerations for Conducting Research on Violence against Women with Disabilities: Discussing Issues of Reasonable Accommodation, Capacity and Equal Participation
Authors: Ingrid Van Der Heijden, Naeemah Abrahams, Jane Harries
Abstract:
Background: Women with disabilities are largely missing from global research on violence prevention, yet research shows that women with disabilities are a particularly marginalised group who experience heightened levels and unique forms of violence than men with disabilities, and women without disabilities. They face heightened stigma, discrimination, and violence due to their gender and their disability. Including women with disabilities in violence, research helps inform policy and prevention interventions that are relevant and inclusive. To ensure their inclusion in violence research, we need ethical guidelines that are sensitive to their heightened risk and vulnerability, that recognize the diversity in the disabled population, but that also promote disabled people’s agency in defining their own violence prevention needs and agendas. Objective: To highlight pertinent ethical issues around women with disabilities’ inclusion and participation in violence research. Methodology: Considering the lack of formalized guidelines for research of people with disabilities, we draw from the literature on international ethics guidelines for researching violence against women, and the Emancipatory Disability Research paradigm, as well as drawing from our own experiences from the field in applying the guidelines when doing research with disabled women. Findings: Following the guiding ethical principles of respect, benefit, justice, and do no harm, we argue that reasonable accommodation, capacity, and equal participation need to be considered in conceptualizing and conducting ethical violence research with women with disabilities. We conclude that disability research in the area of violence is highly politicized and must be carefully scrutinized to ensure justice and the contribution of women with disabilities to their own welfare. Implications: We suggest that these issues are practically applied in the field and tested and critiqued to enhance best practice for undertaking ethical research with this particular group. It is important that not only researchers and ethics committees, but also disabled women and disabled organizations, are involved in enhancing and formalizing ethical research guidelines for marginalized populations.Keywords: capacity, emancipatory disability research paradigm equal participation, reasonable accommodation, research ethics, violence against women with disabilities
Procedia PDF Downloads 3392979 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1062978 The Legal Position of Criminal Prevention in the Metaverse World
Authors: Andi Intan Purnamasari, Supriyadi, Sulbadana, Aminuddin Kasim
Abstract:
Law functions as social control. Providing arrangements not only for legal certainty, but also in the scope of justice and expediency. The three values achieved by law essentially function to bring comfort to each individual in carrying out daily activities. However, it is undeniable that global conditions have changed the orientation of people's lifestyles. Some people want to ensure their existence in the digital world which is popularly known as the metaverse. Some countries even project their city to be a metaverse city. The order of life is no longer limited to the real space, but also to the cyber world. Not infrequently, legal events that occur in the cyber world also force the law to position its position and even prevent crime in cyberspace. Through this research, conceptually it provides a view of the legal position in crime prevention in the Metaverse world. when the law acts to regulate the situation in the virtual world, of course some people will feel disturbed, this is due to the thought that the virtual world is a world in which an avatar can do things that cannot be done in the real world, or can be called a world without boundaries. Therefore, when the law is present to provide boundaries, of course the concept of the virtual world itself becomes no longer a cyber world that is not limited by space and time, it becomes a new order of life. approach, approach, approach, approach, and approach will certainly be the method used in this research.Keywords: crime, cyber, metaverse, law
Procedia PDF Downloads 1482977 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation
Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana
Abstract:
For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH
Procedia PDF Downloads 1482976 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 96