Search results for: energy lost per cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10280

Search results for: energy lost per cycle

9830 Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries

Authors: Concetta Busacca, Leone Frusteri, Orazio Di Blasi, Alessandra Di Blasi

Abstract:

The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles.

Keywords: electrospinning, self standing materials, Na ion battery, cathode materials

Procedia PDF Downloads 52
9829 Impact of Building Orientation on Energy Performance of Buildings in Kabul, Afghanistan

Authors: Mustafa Karimi, Chikamoto Tomoyuki

Abstract:

The building sector consumes 36% of total global energy used, whereas only residential buildings are responsible for 22% of that. In residential buildings, energy used for space heating and cooling represents the majority part of the total energy consumption. Although Afghanistan is amongst the lowest in energy usage globally, residential buildings’ energy consumption has caused serious environmental issues, especially in the capital city, Kabul. After decades of war in Afghanistan, redevelopment of the built environment started from scratch in the past years; therefore, to create sustainable urban areas, it is critical to find the most energy-efficient design parameters for buildings that will last for decades. This study aims to assess the impact of building orientation on the energy performance of buildings in Kabul. It is found that the optimal orientation for buildings in Kabul is South and South-southeast, while West-northwest and Northeast orientations are the worst in terms of energy performance. The difference in the total energy consumption between the best and the worst orientation is 17.5%.

Keywords: building orientation, energy consumption, residential buildings, Kabul, environmental issues

Procedia PDF Downloads 113
9828 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting

Procedia PDF Downloads 426
9827 Using Life Cycle Assessment in Potable Water Treatment Plant: A Colombian Case Study

Authors: Oscar Orlando Ortiz Rodriguez, Raquel A. Villamizar-G, Alexander Araque

Abstract:

There is a total of 1027 municipal development plants in Colombia, 70% of municipalities had Potable Water Treatment Plants (PWTPs) in urban areas and 20% in rural areas. These PWTPs are typically supplied by surface waters (mainly rivers) and resort to gravity, pumping and/or mixed systems to get the water from the catchment point, where the first stage of the potable water process takes place. Subsequently, a series of conventional methods are applied, consisting in a more or less standardized sequence of physicochemical and, sometimes, biological treatment processes which vary depending on the quality of the water that enters the plant. These processes require energy and chemical supplies in order to guarantee an adequate product for human consumption. Therefore, in this paper, we applied the environmental methodology of Life Cycle Assessment (LCA) to evaluate the environmental loads of a potable water treatment plant (PWTP) located in northeastern Colombia following international guidelines of ISO 14040. The different stages of the potable water process, from the catchment point through pumping to the distribution network, were thoroughly assessed. The functional unit was defined as 1 m³ of water treated. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results allowed determining that in the plant, the largest impact was caused by Clarifloc (82%), followed by Chlorine gas (13%) and power consumption (4%). In this context, the company involved in the sustainability of the potable water service should ideally reduce these environmental loads during the potable water process. A strategy could be the use of Clarifloc can be reduced by applying coadjuvants or other coagulant agents. Also, the preservation of the hydric source that supplies the treatment plant constitutes an important factor, since its deterioration confers unfavorable features to the water that is to be treated. By concluding, treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior vary from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operation cycle.

Keywords: climate change, environmental impact, life cycle assessment, treated water

Procedia PDF Downloads 210
9826 The Assessment of the Diabetes Mellitus Complications on Oral Health: A Longitudinal Study

Authors: Mimoza Canga, Irene Malagnino, Gresa Baboci, Edit Xhajanka, Vito Antonio Malagnino

Abstract:

Background: Diabetes mellitus is regarded as a very problematic chronic disease that has an effect on a considerable number of people around the world and it is straightforwardly associated with the oral health condition of the patients. Objective: The objective of this study is to analyze and evaluate the impact of diabetes mellitus on oral health. Materials and methods: In the present research were taken into consideration 300 patients with an age range of 11 to 80 years old. The study sample was composed of 191 males, respectively 63.7% of them and 109 females 36.3% of the participants. We divided them into seven age groups: 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years.This descriptive and analytical research was designed as a longitudinal study. Statistical analysis was performed using IBM SPSS 23.0 statistics. Results: The majority of patients participating in the study belonged to the age range from 41 to 50 years old, precisely 20.7% of them, while 27% of the patients were from 51 to 60 years old. Based on the present research, it resulted that 24.4% of the participant had high blood sugar values 250-300 mg/dl, whereas 19 % of the patients had very high blood sugar values 300-350 mg/dl. Based on the results of the current study, it was observed that 83.7% of patients were affected by gingivitis. In the current study, the significant finding is that 22% of patients had more than 7 teeth with dental caries and 21% of them had 5-7 teeth with dental caries, whereas 29% of the patients had 4-5 dental caries and the remaining 28% of them had 1-3 dental caries. The present study showed that most of the patients, 27% of them had lost more than 7 teeth and 22% of the participants had lost 5-7 teeth, whereas 31% of the patients had lost 4-5 teeth and only 20 % of them had lost 1-3 teeth. This study proved that high blood sugar values had a direct impact on the manifestation of gingivitis and there it was a strong correlation between them with P-value = .001. A strong correlation was found out between dental caries and high blood sugar values with P-value ˂.001. Males with diabetes mellitus were more affected by dental caries and this was proved by the P-value= .02, in comparison to females P-value=.03. The impact of high blood sugar values affects missing teeth and the correlation between them was statistically significant with P-value ˂ .001. Conclusion: The results of this study suggest that diabetes mellitus is a possible risk factor in oral health for the reason that Albanian patients over 51 years old, respectively 43% of them have over 5 teeth with dental caries as compared with 49% of the patients who had over 5 missing teeth, whereas the majority 83.7% of them suffered from gingivitis. This study asserts that patients who do not have periodical check-ups of diabetes mellitus are at significant risk of oral diseases.

Keywords: dental caries, diabetes mellitus, gingivitis, missing teeth

Procedia PDF Downloads 187
9825 Testing the Life Cycle Theory on the Capital Structure Dynamics of Trade-Off and Pecking Order Theories: A Case of Retail, Industrial and Mining Sectors

Authors: Freddy Munzhelele

Abstract:

Setting: the empirical research has shown that the life cycle theory has an impact on the firms’ financing decisions, particularly the dividend pay-outs. Accordingly, the life cycle theory posits that as a firm matures, it gets to a level and capacity where it distributes more cash as dividends. On the other hand, the young firms prioritise investment opportunities sets and their financing; thus, they pay little or no dividends. The research on firms’ financing decisions also demonstrated, among others, the adoption of trade-off and pecking order theories on the dynamics of firms capital structure. The trade-off theory talks to firms holding a favourable position regarding debt structures particularly as to the cost and benefits thereof; and pecking order is concerned with firms preferring a hierarchical order as to choosing financing sources. The case of life cycle hypothesis explaining the financial managers’ decisions as regards the firms’ capital structure dynamics appears to be an interesting link, yet this link has been neglected in corporate finance research. If this link is to be explored as an empirical research, the financial decision-making alternatives will be enhanced immensely, since no conclusive evidence has been found yet as to the dynamics of capital structure. Aim: the aim of this study is to examine the impact of life cycle theory on the capital structure dynamics trade-off and pecking order theories of firms listed in retail, industrial and mining sectors of the JSE. These sectors are among the key contributors to the GDP in the South African economy. Design and methodology: following the postpositivist research paradigm, the study is quantitative in nature and utilises secondary data obtainable from the financial statements of sampled firm for the period 2010 – 2022. The firms’ financial statements will be extracted from the IRESS database. Since the data will be in panel form, a combination of the static and dynamic panel data estimators will used to analyse data. The overall data analyses will be done using STATA program. Value add: this study directly investigates the link between the life cycle theory and the dynamics of capital structure decisions, particularly the trade-off and pecking order theories.

Keywords: life cycle theory, trade-off theory, pecking order theory, capital structure, JSE listed firms

Procedia PDF Downloads 45
9824 Effect of Temperature on the Permeability and Time-Dependent Change in Thermal Volume of Bentonite Clay During the Heating-Cooling Cycle

Authors: Nilufar Chowdhury, Fereydoun Najafian Jazi, Omid Ghasemi-Fare

Abstract:

The thermal effect on soil properties induces significant variations in hydraulic conductivity, which is attributable to temperature-dependent transitions in soil properties. With the elevation of temperature, there can be a notable increase in intrinsic permeability due to the degeneration of bound water molecules into a free state facilitated by thermal energy input. Conversely, thermal consolidation may cause a reduction in intrinsic permeability as soil particles undergo densification. This thermal response of soil permeability exhibits pronounced heterogeneity across different soil types. Furthermore, this temperature-induced disruption of the bound water within clay matrices can enhance the mineral-to-mineral contact, initiating irreversible deformation within the clay structure. This indicates that when soil undergoes heating-cooling cycles, plastic strain can develop, which needs to be investigated for every soil type to understand the thermo-hydro mechanical behavior of clay properly. This research aims to study the effect of the heating-cooling cycle on the intrinsic permeability and time-dependent evaluation of thermal volume change of sodium Bentonite clay. A temperature-controlled triaxial permeameter cell is used in this study. The selected temperature is 20° C, 40° C, 40° C and 80° C. The hydraulic conductivity of Bentonite clay under 100 kPa confining stresses was measured. Hydraulic conductivity analysis was performed on a saturated sample for a void ratio e = 0.9, corresponding to a dry density of 1.2 Mg/m3. Different hydraulic gradients were applied between the top and bottom of the sample to obtain a measurable flow through the sample. The hydraulic gradient used for the experiment was 4000. The diameter and thickness of the sample are 101. 6 mm, and 25.4 mm, respectively. Both for heating and cooling, the hydraulic conductivity at each temperature is measured after the flow reaches the steady state condition to make sure the volume change due to thermal loading is stabilized. Thus, soil specimens were kept at a constant temperature during both the heating and cooling phases for at least 10-18 days to facilitate the equilibration of hydraulic transients. To assess the influence of temperature-induced volume changes of Bentonite clay, the evaluation of void ratio change during this time period has been monitored. It is observed that the intrinsic permeability increases by 30-40% during the heating cycle. The permeability during the cooling cycle is 10-12% lower compared to the permeability observed during the heating cycle at a particular temperature. This reduction in permeability implies a change in soil fabric due to the thermal effect. An initial increase followed by a rapid decrease in void ratio was observed, representing the occurrence of possible osmotic swelling phenomena followed by thermal consolidation. It has been observed that after a complete heating-cooling cycle, there is a significant change in the void ratio compared to the initial void ratio of the sample. The results obtained suggest that Bentonite clay’s microstructure can change subject to a complete heating-cooling process, which regulates macro behavior such as the permeability of Bentonite clay.

Keywords: bentonite, permeability, temperature, thermal volume change

Procedia PDF Downloads 19
9823 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump

Authors: Merieleen Engtipi

Abstract:

India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.

Keywords: energy demand, energy cooperation, fossil fuels, technology transfer

Procedia PDF Downloads 235
9822 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 257
9821 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 83
9820 Semi-pilot Biooxidation of Refractory Sulfide-Gold Ore Using Ferroplasma Acidophilum: D-(+)-Sucsore as a Booster and Columns Tests

Authors: Mohammad Hossein Karimi Darvanjooghi, Sara Magdouli, Satinder Kaur Brar

Abstract:

It has been reported that the microorganism’s attachment to the surfaces of ore samples is a key factor that influences the biooxidation in pretreatment for recovery of gold in sulfide-bearing ores. In this research, the implementation of D-(+)-Sucrose on the biooxidation of ore samples were studied in a semi-pilot experiment. The experiments were carried out in five separate jacketed columns (1 m height and 6 cm diameter) at a constant temperature of 37.5 ̊C and saturated humidity. The airflow rate and recycling solution flow rate were studied in the research and the optimum operating condition were reported. The ore sample (0.49 ppm gold grade) was obtained from the Hammond Reef mine site containing 15 wt.% of pyrite which included 98% of gold according to the results of micrograph images. The experiments were continued up to 100 days while air flow rates were chosen to be 0.5, 1, 1.5, 2, and 3 lit/min and the recycling solution (Containing 9K media and 0.4 wt.% D-(+)-Sucrose) flow rates were kept 5, 8, 15 ml/hr. The results indicated that the addition of D-(+)-Sucrose increased the bacterial activity due to the overproduction of extracellular polymeric substance (EPS) up to 95% and for the condition that the recycling solution and air flow rate were chosen to be 8 ml/hr and 2 lit/min, respectively, the maximum pyrite dissolution of 76% was obtained after 60 days. The results indicated that for the air flow rates of 0.5, 1, 1.5, 2, and 3 lit/min the ratio of daily pyrite dissolution per daily solution lost were found to be 0.025, 0.033, 0.031, 0.043, and 0.009 %-pyrite dissolution/ml-lost. The implementation of this microorganisms and the addition of D-(+)-Sucrose will enhance the efficiency of gold recovery through faster biooxidation process and leads to decrease in the time and energy of operation toward desired target; however, still other parameters including particle size distribution, agglomeration, aeration design, chemistry of recycling solution need to be controlled and monitored for reaching the optimum condition.

Keywords: column tests, biooxidation, gold recovery, Ferroplasma acidophilum, optimization

Procedia PDF Downloads 52
9819 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 409
9818 Hamiltonian Paths and Cycles Passing through Prescribed Edges in the Balanced Hypercubes

Authors: Dongqin Cheng

Abstract:

The n-dimensional balanced hypercube BHn (n ≥ 1) has been proved to be a bipartite graph. Let P be a set of edges whose induced subgraph consists of pairwise vertex-disjoint paths. For any two vertices u, v from different partite sets of V (BHn). In this paper, we prove that if |P| ≤ 2n − 2 and the subgraph induced by P has neither u nor v as internal vertices, or both of u and v as end-vertices, then BHn contains a Hamiltonian path joining u and v passing through P. As a corollary, if |P| ≤ 2n−1, then the BHn contains a Hamiltonian cycle passing through P.

Keywords: interconnection network, balanced hypercube, Hamiltonian cycle, prescribed edges

Procedia PDF Downloads 186
9817 Seismic Behavior of Short Core Buckling Restrained Braces

Authors: Nader Hoveidae

Abstract:

This paper investigates the seismic behavior of a new type of buckling restrained braces (BRBs) called "Short Core BRBs" in which a shorter core segment is used as an energy dissipating part and an elastic part is serially connected to the core. It seems that a short core BRB is easy to be fabricated, inspected and replaced after a severe earthquake. In addition, the energy dissipating capacity in a short core BRB is higher because of larger core strains. However, higher core strain demands result in high potential of low-cycle fatigue fracture. In this paper, a strategy is proposed to estimate the minimum core length in a short core BRBs. The seismic behavior of short core buckling restrained brace is experimentally examined. The results revealed that the short core buckling restrained brace is able to sustain large inelastic strains without any significant instability or strength degradation.

Keywords: short core, Buckling Restrained Brace, finite element analysis, cyclic test

Procedia PDF Downloads 344
9816 Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon

Authors: Yathreb Sabsaby

Abstract:

Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building.

Keywords: energy-efficiency, existing building, multifamily residential building, retrofit

Procedia PDF Downloads 438
9815 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis

Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik

Abstract:

We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.

Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing

Procedia PDF Downloads 198
9814 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 176
9813 Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone

Authors: Yuang Guo, Dewancker Bart

Abstract:

The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones.

Keywords: energy consumption, design parameters, indoor thermal comfort, simulation study, severe cold climate zone

Procedia PDF Downloads 137
9812 Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades

Authors: Ennouri Triki, Toan Vu-Khanh

Abstract:

Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero.

Keywords: elastomer, energy, fracture, friction, pointed blades

Procedia PDF Downloads 284
9811 An Analysis of Energy Use and Input Level for Tomato Production in Turkey

Authors: Hasan Vural

Abstract:

The purpose of this study was to determine energy equivalents of inputs and output in tomato production in Bursa province. The data in this study were collected from tomato farms in Bursa province, Karacabey and Mustafakemalpasa district. Questionnaires were administered through face-to-face interview in 2011-2012. The results of the study show that diesel have the highest rate of energy equivalency of all the inputs used in tomato production at 60,07%. The energy equivalent rate of electricity is 4,26% and the energy equivalent rate of water is 0,87%. The energy equivalent rates for human power, machinery, chemicals and water for irrigation were determined to be low in tomato production. According to the output/input ratio calculated, the energy ratio is 1,50 in tomato production in the research area. This ratio implies that the inputs used in tomato production have not been used effectively. Ineffective use of these resources also causes environmental problems.

Keywords: Tomato production, energy ratio, energy input, Turkey

Procedia PDF Downloads 212
9810 Perspective and Challenge of Tidal Power in Bangladesh

Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman

Abstract:

Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.

Keywords: sustainable energy, tidal power, cost analysis, power demand, gas crisis

Procedia PDF Downloads 478
9809 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 119
9808 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 460
9807 Public Perception of Energy Security in Lithuania: Between Material Interest and Energy Independence

Authors: Dainius Genys, Vylius Leonavicius, Ricardas Krikstolaitis

Abstract:

Energy security problems in Lithuania are analyzed on a regular basis; however, there is no comprehensive research on the very issue of the concept of public energy security. There is a lack of attention not only to social determinants of perception of energy security, but also a lack of a deeper analysis of the public opinion. This article aims to research the Lithuanian public perception of energy security. Complex tasks were set during the sociological study. Survey questionnaire consisted of different sets of questions: view of energy security (risk perception, political orientation, and energy security; comprehensiveness and energy security); view of energy risks and threats (perception of energy safety factors; individual dependence and burden; disobedience and risk); view of the activity of responsible institutions (energy policy assessment; confidence in institutions and energy security), demographic issues. In this article, we will focus on two aspects: a) We will analyze public opinion on the most important aspects of energy security and social factors influencing them; The hypothesis is made that public perception of energy security is related to value orientations: b) We will analyze how public opinion on energy policy executed by the government and confidence in the government are intertwined with the concept of energy security. Data of the survey, conducted on May 10-19 and June 7-17, 2013, when Seimas and the government consisted of the coalition dominated by Social Democrats with Labor, Order and Justice Parties and the Electoral Action of Poles, were used in this article. It is important to note that the survey was conducted prior to Russia’s occupation of the Crimea.

Keywords: energy security, public opinion, risk, energy threat, energy security policy

Procedia PDF Downloads 487
9806 Energy Policy of India: An Assessment of Its Impacts and Way Forward

Authors: Mrinal Saurabh Bhaskar, Rahul E Ravindranathan, Priyangana Borah

Abstract:

Energy plays a key role and as a driving force for economic and social growth for any country. To manage the energy sources and its efficient utilization in different economic sectors, energy policy of a country is critical. The energy performance of a country is measured in Energy Intensity and India’s Energy Intensity due to several policies interventions has reduced from 0.53 toe/1000USD (2010) in the year 2000 to 0.38 toe/1000USD (2010) in the year 2014, which is about 28 per cent reduction. The Government of India has taken several initiates to manage their increasing energy demand and meet the climate change goals defined by them. The major policy milestones in India related to energy are (i) Enactment of Energy Conservation (EC) Act 2001 (ii) Establishment of Bureau of Energy Efficiency 2001 (iii) National Action Plan on Climate Change (iv) Launch of Demand Side Management schemes (v) Amendment of EC Act 2010 (vi) Launch of Perform Achieve and Trade scheme 2012. Through a critical review, this paper highlights the key energy policy interventions by India, its benefits and impact, challenges faced and efforts of the Government to overcome such challenges. Such take away would be helpful for other countries who are proposing to prepare or amend their energy policy for their different economic sectors.

Keywords: energy, efficiency, climate, policy

Procedia PDF Downloads 320
9805 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 30
9804 Settlement Network Supplying Energy

Authors: Balázs Kulcsár

Abstract:

Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly.

Keywords: renewable energy, energy geography, self-sufficiency, energy transition

Procedia PDF Downloads 162
9803 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 290
9802 Role of Power Electronics in Grid Integration of Renewable Energy Systems

Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich

Abstract:

Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.

Keywords: power electronics, renewable energy, smart grid, green energy, power technology

Procedia PDF Downloads 632
9801 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 255