Search results for: dynamic rheology study
51614 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 21751613 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.Keywords: 3D printing, composite bushing, modal analysis, multi-material
Procedia PDF Downloads 10951612 Control of Sensors in Metering System of Fluid
Authors: A. Harrouz, O. Harrouz, A. Benatiallah
Abstract:
This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: data acquisition, dynamic metering system, reference standards, metrological control
Procedia PDF Downloads 49251611 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces
Authors: Bo Liu, Liangtian Gao, Idrees Qasim
Abstract:
The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.Keywords: dynamics, statics, roll, trim, vertical displacement, dynamic load, tilt
Procedia PDF Downloads 22351610 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System
Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong
Abstract:
In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum
Procedia PDF Downloads 19451609 Aerodynamic Brake Study of Reducing Braking Distance for High-Speed Trains
Authors: Phatthara Surachon, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an aerodynamic brake study of reducing braking distance for high-speed trains (HST) using aerodynamic brakes as inspiration from the applications on the commercial aircraft wings. In case of emergency, both braking distance and stopping time are longer than the usual situation. Therefore, the passenger safety and the HST driving control management are definitely obtained by reducing the time and distance of train braking during emergency situation. Due to the limited study and implementation of the aerodynamic brake in HST, the possibility in use and the effectiveness of the aerodynamic brake to the train dynamic movement during braking are analyzed and considered. Regarding the aircraft’s flaps that applied in the HST, the areas of the aerodynamic brake acted as an additional drag force during train braking are able to vary depending on the operating angle and the required dynamic braking force. The HST with a varying speed of 200 km/h to 350 km/h is taken as a case study of this paper. The results show that the stopping time and the brake distance are effectively reduced by the aerodynamic brakes. The mechanical brake and its maintenance are effectively getting this benefit by extending its lifetime for longer use.Keywords: high-speed train, aerodynamic brake, brake distance, drag force
Procedia PDF Downloads 19851608 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing
Procedia PDF Downloads 17551607 Exploring the Entrepreneur-Function in Uncertainty: Towards a Revised Definition
Authors: Johan Esbach
Abstract:
The entrepreneur has traditionally been defined through various historical lenses, emphasising individual traits, risk-taking, speculation, innovation and firm creation. However, these definitions often fail to address the dynamic nature of the modern entrepreneurial functions, which respond to unpredictable uncertainties and transition to routine management as certainty is achieved. This paper proposes a revised definition, positioning the entrepreneur as a dynamic function rather than a human construct, that emerges to address specific uncertainties in economic systems, but fades once uncertainty is resolved. By examining historical definitions and its limitations, including the works of Cantillon, Say, Schumpeter, and Knight, this paper identifies a gap in literature and develops a generalised definition for the entrepreneur. The revised definition challenges conventional thought by shifting focus from static attributes such as alertness, traits, firm creation, etc., to a dynamic role that includes reliability, adaptation, scalability, and adaptability. The methodology of this paper employs a mixed approach, combining theoretical analysis and case study examination to explore the dynamic nature of the entrepreneurial function in relation to uncertainty. The selection of case studies includes companies like Airbnb, Uber, Netflix, and Tesla, as these firms demonstrate a clear transition from entrepreneurial uncertainty to routine certainty. The data from the case studies is then analysed qualitatively, focusing on the patterns of entrepreneurial function across the selected companies. These results are then validated using quantitative analysis, derived from an independent survey. The primary finding of the paper will validate the entrepreneur as a dynamic function rather than a static, human-centric role. In considering the transition from uncertainty to certainty in companies like Airbnb, Uber, Netflix, and Tesla, the study shows that the entrepreneurial function emerges explicitly to address market, technological, or social uncertainties. Once these uncertainties are resolved and a certainty in the operating environment is established, the need for the entrepreneurial function ceases, giving way to routine management and business operations. The paper emphasises the need for a definitive model that responds to the temporal and contextualised nature of the entrepreneur. In adopting the revised definition, the entrepreneur is positioned to play a crucial role in the reduction of uncertainties within economic systems. Once the uncertainties are addressed, certainty is manifested in new combinations or new firms. Finally, the paper outlines policy implications for fostering environments that enables the entrepreneurial function and transition theory.Keywords: dynamic function, uncertainty, revised definition, transition
Procedia PDF Downloads 2051606 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank
Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park
Abstract:
When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)
Procedia PDF Downloads 70651605 Effect of Different Plan Shapes on the Load Carrying Capacity of a Steel Frame under Extreme Loading
Authors: Omid Khandel, Azadeh Parvin
Abstract:
An increase in accidental explosions in recent years has increased the interest on investigating the response and behavior of structures in more details. The present work focused on finite element analysis of multistory steel frame structures with different plan shapes subjected to blast loadings. In order to study the effect of the geometry of the building, three different shapes for the plan of the building were modeled and studied; Rectangular, Square and L shape plans. The nonlinear dynamic analysis was considered in this study. The relocation technique was also used to improve the behavior of structure. The accuracy of the multistory frame model was confirmed with those of the existing study in the literature and they were in good agreement. The effect of span length of the buildings was also considered. Finite element analysis of various scenarios for relocating the plastic hinges and improving the response of the structure was performed. The base shear versus displacement curves were compared to reveal the best possible scenarios to provide recommendations to designers and practitioners.Keywords: nonlinear dynamic analysis, plastic hinge relocation, Retrofit, SAP2000
Procedia PDF Downloads 28251604 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical
Procedia PDF Downloads 25151603 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt
Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad
Abstract:
The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.Keywords: ecology, land resource, LULCC, management, metabolism, model, scenarios, system dynamics, urban development
Procedia PDF Downloads 38051602 Effects of Preparation Caused by Ischemic-Reperfusion along with Sodium Bicarbonate Supplementation on Submaximal Dynamic Force Production
Authors: Sara Nasiri Semnani, Alireza Ramzani
Abstract:
Background and Aims: Sodium bicarbonate is a supplementation that used to reduce fatigue and increase power output in short-term training. On the other hand, the Ischemic Reperfusion Preconditioning (IRPC) is an appropriate stimulus to increase the submaximal contractile response. Materials and methods: 9 female student-athletes in double-blind randomized crossover design were three mode, sodium bicarbonate + IRPC, sodium bicarbonate and placebo+ IRPC. Participants moved forward single arm dumbbell hand with a weight of 2 kg can be carried out most frequently. Results: The results showed that plasma lactate concentration and records of sodium bicarbonate + IRPC and sodium bicarbonate conditions were significantly different compared to placebo + IRPC (Respectively p=0.001, p=0/02). Conclusion: According to the research findings, bicarbonate supplementation in IRPC training condition increased force and delay fatigue in submaximal dynamic contraction.Keywords: ischemic reperfusion, preconditioning, sodium bicarbonate, submaximal dynamic force
Procedia PDF Downloads 30351601 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis
Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch
Abstract:
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction
Procedia PDF Downloads 20951600 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing
Procedia PDF Downloads 42451599 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 14651598 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study
Abstract:
A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio
Procedia PDF Downloads 36951597 System Identification of Timber Masonry Walls Using Shaking Table Test
Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi
Abstract:
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition
Procedia PDF Downloads 26451596 Thermal Comfort Investigation Based on Predicted Mean Vote (PMV) Index Using Computation Fluid Dynamic (CFD) Simulation: Case Study of University of Brawijaya, Malang-Indonesia
Authors: Dewi Hardiningtyas Sugiono
Abstract:
Concerning towards the quality of air comfort and safety to pedestrians in the University area should be increased as Indonesia economics booming. Hence, the University management needs guidelines of thermal comfort to innovate a new layout building. The objectives of this study is to investigate and then to evaluate the distribution of thermal comfort which is indicated by predicted mean vote (PMV) index at the University of Brawijaya (UB), Malang. The PMV figures are used to evaluate and to redesign the UB layout. The research is started with study literature and early survey to collect all information of building layout and building shape at the University of Brawijaya. The information is used to create a 3D model in CAD software. The model is simulated by Computational Fluid Dynamic (CFD) software to measure the PMV factors of air temperature, relative humidity and air speed in some locations. Validation is done by comparing between PMV value from observation and PMV value from simulation. The resuls of the research shows the most sensitive of microclimatic factors is air temperature surrounding the UB building. Finally, the research is successfully figure out the UB layout and provides further actions to increase the thermal comfort.Keywords: thermal comfort, heat index (HI), CFD, layout
Procedia PDF Downloads 30551595 Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling
Authors: Laidson P. Gomes, Cristina T. Andrade, Eduardo M. Del Aguila, Cameron Alexander, Vânia M. F. Paschoalin
Abstract:
Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of E. coli. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between E. coli suspensions mixed with FITC-labeled chitosan polymers and nanoparticles.Keywords: chitosan nanoparticles, dynamic light scattering, zeta potential, confocal microscopy, antibacterial activity
Procedia PDF Downloads 50151594 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan
Authors: Lubna Naz, Munir Ahmad, G. M. Arif
Abstract:
This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation
Procedia PDF Downloads 36451593 Remote Sensing and Gis Use in Trends of Urbanization and Regional Planning
Authors: Sawan Kumar Jangid
Abstract:
The paper attempts to study various facets of urbanization and regional planning in the framework of the present conditions and future needs. Urbanization is a dynamic system in which development and changes are prominent features; which implies population growth and changes in the primary, secondary and tertiary sector in the economy. Urban population is increasing day by day due to a natural increase in population and migration from rural areas, and the impact is bound to have in urban areas in terms of infrastructure, environment, water supply and other vital resources. For the organized way of planning and monitoring the implementation of Physical urban and regional plans high-resolution satellite imagery is the potential solution. Now the Remote Sensing data is widely used in urban as well as regional planning, infrastructure planning mainly telecommunication and transport network planning, highway development, accessibility to market area development in terms of catchment and population built-up area density. With Remote Sensing it is possible to identify urban growth, which falls outside the formal planning control. Remote Sensing and GIS technique combined together facilitate the planners, in making a decision, for general public and investors to have relevant data for their use in minimum time. This paper sketches out the Urbanization modal for the future development of Urban and Regional Planning. The paper suggests, a dynamic approach towards regional development strategy.Keywords: development, dynamic, migration, resolution
Procedia PDF Downloads 41951592 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 16151591 The Application of Dynamic Network Process to Environment Planning Support Systems
Authors: Wann-Ming Wey
Abstract:
In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)
Procedia PDF Downloads 34451590 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads
Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon
Abstract:
The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads
Procedia PDF Downloads 27051589 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method
Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam
Abstract:
Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty
Procedia PDF Downloads 55751588 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 13051587 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems
Procedia PDF Downloads 47051586 A Static and Dynamic Slope Stability Analysis of Sonapur
Authors: Rupam Saikia, Ashim Kanti Dey
Abstract:
Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method
Procedia PDF Downloads 26051585 Evaluation of Dynamic Log Files for Different Dose Rates in IMRT Plans
Authors: Saad Bin Saeed, Fayzan Ahmed, Shahbaz Ahmed, Amjad Hussain
Abstract:
The aim of this study is to evaluate dynamic log files (Dynalogs) at different dose rates by dose-volume histograms (DVH) and used as a (QA) procedure of IMRT. Seven patients of phase one head and neck cancer with similar OAR`s are selected randomly. Reference plans of dose rate 300 and 600 MU/Min with prescribed dose of 50Gy in 25 fractions for each patient is made. Dynalogs produced by delivery of reference plans processed by in-house MATLAB program which produces new field files contain actual positions of multi-leaf collimators (MLC`s) instead of planned positions in reference plans. Copies of reference plans are used to import new field files generated by MATLAB program and renamed as Dyn.plan. After dose calculations of Dyn.plans for different dose rates, DVH, and multiple linear regression tools are used to evaluate reference and Dyn.plans. The results indicate good agreement of correlation between different dose rate plans. The maximum dose difference among PTV and OAR`s are found to be less than 5% and 9% respectively. The study indicates the potential of dynalogs to be used as patient-specific QA of IMRT at different dose rate.Keywords: IMRT, dynalogs, dose rate, DVH
Procedia PDF Downloads 535