Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10683

Search results for: adaptive optimal control law

10683 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.

Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control

Procedia PDF Downloads 276
10682 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System

Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong

Abstract:

In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.

Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum

Procedia PDF Downloads 82
10681 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive control, unlike a fixed gain control, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture results in an enhanced tracking performance in the presence of parametric uncertainties.

Keywords: UAV, quadrotor, robotic arm augmentation, model reference adaptive control, LQR control

Procedia PDF Downloads 250
10680 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 280
10679 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: adaptive control, deadbeat, pole-placement, bench-top helicopter, self-tuning control

Procedia PDF Downloads 326
10678 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

Authors: Khaing Yadana Swe, Lillie Dewan

Abstract:

At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

Keywords: model-free adaptive control, cascade control, adaptive control, PID

Procedia PDF Downloads 454
10677 Adaptive Cooperative Control of Nonholonomic Mobile Robot Based on Immersion and Invariance

Authors: Imil Hamda Imran, Sami El Ferik

Abstract:

This paper deals with adaptive cooperative control of non holonomic mobile robot moved together in a given formation. The controller is designed based on the Immersion and Invariance (I&I) approach. I&I is a framework for adaptive stabilization of nonlinear systems with uncertain parameters. We investigate the tracking control of non holonomic mobile robot with uncertainties in The I&I-based adaptive controller regulates the angular and linear velocity of non holonomic mobile robot. The results demonstrate that the ability of I&I-based adaptive cooperative control in tracking the position of non holonomic mobile robot.

Keywords: nonholonomic mobile robot, immersion and invariance, adaptive control, uncertain nonlinear systems

Procedia PDF Downloads 368
10676 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: adaptive control, active steering, pole placement, vehicle dynamics

Procedia PDF Downloads 300
10675 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 245
10674 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System

Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal

Abstract:

In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.

Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system

Procedia PDF Downloads 350
10673 Power-Aware Adaptive Coverage Control with Consensus Protocol

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.

Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination

Procedia PDF Downloads 232
10672 UML Model for Double-Loop Control Self-Adaptive Braking System

Authors: Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.

Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle

Procedia PDF Downloads 243
10671 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi

Abstract:

In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control

Procedia PDF Downloads 484
10670 Controlled Chemotherapy Strategy Applied to HIV Model

Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman

Abstract:

Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.

Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle

Procedia PDF Downloads 200
10669 Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes

Authors: V. Makis, L. Jafari

Abstract:

In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart.

Keywords: Bayesian u-chart, economic design, optimal stopping, semi-Markov decision process, statistical process control

Procedia PDF Downloads 264
10668 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 208
10667 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO

Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero

Abstract:

Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.

Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control

Procedia PDF Downloads 210
10666 Research on Robot Adaptive Polishing Control Technology

Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia PDF Downloads 53
10665 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities

Authors: Tomoaki Hashimoto

Abstract:

Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.

Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints

Procedia PDF Downloads 115
10664 Adaptive Control Approach for an Unmanned Aerial Manipulator

Authors: Samah Riache, Madjid Kidouche

Abstract:

In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.

Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control

Procedia PDF Downloads 14
10663 Adaptive Nonlinear Control of a Variable Speed Horizontal Axis Wind Turbine: Controller for Optimal Power Capture

Authors: Rana M. Mostafa, Nouby M. Ghazaly, Ahmed S. Ali

Abstract:

This article introduces a solution for increasing the wind energy extracted from turbines to overcome the more electric power required. This objective provides a new science discipline; wind turbine control. This field depends on the development in power electronics to provide new control strategies for turbines. Those strategies should deal with all turbine operating modes. Here there are two control strategies developed for variable speed horizontal axis wind turbine for rated and over rated wind speed regions. These strategies will support wind energy validation, decrease manufacturing overhead cost. Here nonlinear adaptive method was used to design speed controllers to a scheme for ‘Aeolos50 kw’ wind turbine connected to permanent magnet generator via a gear box which was built on MATLAB/Simulink. These controllers apply maximum power point tracking concept to guarantee goal achievement. Procedures were carried to test both controllers efficiency. The results had been shown that the developed controllers are acceptable and this can be easily declared from simulation results.

Keywords: adaptive method, pitch controller, wind energy, nonlinear control

Procedia PDF Downloads 136
10662 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 369
10661 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller

Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu

Abstract:

This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.

Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression

Procedia PDF Downloads 37
10660 A Development of Holonomic Mobile Robot Using Fuzzy Multi-Layered Controller

Authors: Seungwoo Kim, Yeongcheol Cho

Abstract:

In this paper, a holonomic mobile robot is designed in omnidirectional wheels and an adaptive fuzzy controller is presented for its precise trajectories. A kind of adaptive controller based on fuzzy multi-layered algorithm is used to solve the big parametric uncertainty of motor-controlled dynamic system of 3-wheels omnidirectional mobile robot. The system parameters such as a tracking force are so time-varying due to the kinematic structure of omnidirectional wheels. The fuzzy adaptive control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good performance of a holonomic mobile robot is confirmed through live tests of the tracking control task.

Keywords: fuzzy adaptive control, fuzzy multi-layered controller, holonomic mobile robot, omnidirectional wheels, robustness and stability.

Procedia PDF Downloads 227
10659 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 336
10658 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots

Procedia PDF Downloads 250
10657 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control

Procedia PDF Downloads 36
10656 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 458
10655 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 213
10654 A Study on the Optimal Placement and Control Scheme for Multi Terminal HVDC in Korea

Authors: Chur Hee Lee, Ju Sik Kwak, Seung Wan Kim

Abstract:

This paper deals about economics and control of optimal placement of multi-terminal HVDC in Korea. Currently, No.1 and 2 HVDC are installed in Jeju and Mainland, Dangjin Godeok HVDC starts operation in 2020. Jeju No.3 HVDC also starts operation in 2022. HVDC systems in Korea are expanding. Also, super grid projects with China, Japan, and Russia are under consideration. In this situation, it is necessary to study how to install optimal HVDC in Korea and how to control it. After initializing the Optical Polwer Flow (OPF) procudure using lossless economic dispatch, grobal iteration will be set. And then, this will be formed as the Lagrangian function and linearizied. We will also analyze the advantages and disadvantages of each operation mode for optimal operating conditions of voltage and current complex HVDC in Korea.

Keywords: economics, HVDC, multi terminal, optimal

Procedia PDF Downloads 22