Search results for: demand forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3634

Search results for: demand forecast

3184 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 173
3183 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations

Authors: Daniil Karzanov

Abstract:

This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.

Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations

Procedia PDF Downloads 210
3182 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 401
3181 Using VR as a Training Tool in the Banking Industry

Authors: Bjørn Salskov, Nicolaj Bang, Charlotte Falko

Abstract:

Future labour markets demand employees that can carry out a non-linear task which is still not possible for computers. This means that employees must have well-developed soft-skills to perform at high levels in such a work environment. One of these soft-skills is presenting a message effectively. To be able to present a message effectively, one needs to practice this. To practice effectively, the trainee needs feedback on the current performance. Here VR environments can be used as a practice tool because it gives the trainee a sense of presence and reality. VR environments are becoming a cost-effective training method since it does not demand the presence of an expert to provide this feedback. The research article analysed in this study suggests that VR environment can be used and are able to provide the necessary feedback to the trainee which in turn will help the trainee become better at the task. The research analysed in this review does, however, show that there is a need for a study with larger sample size and a study which runs over a longer period.

Keywords: training, presentation, presentation skills, VR training, VR as a training tool, VR and presentation

Procedia PDF Downloads 126
3180 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler

Authors: Syed Ahzam Tariq, Atharva Modi

Abstract:

This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.

Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability

Procedia PDF Downloads 130
3179 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana

Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi

Abstract:

Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.

Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa

Procedia PDF Downloads 290
3178 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 343
3177 Part of Geomatics Technology in the Capability to Implement an on Demand Transport in Oran Wilaya (the Northwestern of Algeria)

Authors: N. Brahmia

Abstract:

The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria. As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS)… so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.

Keywords: geomatics, GIS, ODT, transport systems

Procedia PDF Downloads 607
3176 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation

Authors: Li-hsing Shih, Wei-Jen Hsu

Abstract:

Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.

Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation

Procedia PDF Downloads 76
3175 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 354
3174 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro

Authors: Rafael Zhindon Almeida

Abstract:

Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.

Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models

Procedia PDF Downloads 106
3173 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan

Authors: Lubna Naz, Munir Ahmad, G. M. Arif

Abstract:

This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.

Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation

Procedia PDF Downloads 365
3172 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 195
3171 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement

Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof

Abstract:

A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.

Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field

Procedia PDF Downloads 664
3170 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 160
3169 The Strategies to Develop Post-Disaster Multi-Mode Transportation System from the Perspective of Traffic Resilience

Authors: Yuxiao Jiang, Lingjun Meng, Mengyu Zhan, Lichunyi Zhang, Yingxia Yun

Abstract:

On August 8th of 2015, a serious explosion occurred in Binhai New Area of Tianjin. This explosion led to the suspension of Tianjin-Binhai Light Rail Line 9 which was an important transportation mean connecting the old and new urban areas and the suspension causes inconvenience to commuters traveling from Tianjin to Binhai or Binhai to Tianjin and residents living by Line 9. On this regard, this paper intends to give suggestions on how to develop multi-mode transportation system rapidly and effectively after a disaster and tackle with the problems in terms of transportation infrastructure facilities. The paper proposes the idea of traffic resilience which refers to the city’s ability to restore its transportation system and reduce risks when the transportation system is destroyed by a disaster. By doing questionnaire research, on the spot study and collecting data from the internet, a GIS model is established so as to analyze the alternative traffic means used by different types of residents and study the transportation supply and demand. The result shows that along the Line 9, there is a larger demand for alternative traffic means in the place which is nearer to the downtown area. Also, the distribution of bus stations is more reasonable in the place nearer to downtown area, however, the traffic speed in the area is slower. Based on traffic resilience, the paper raises strategies to develop post-disaster multi-mode transportation system such as establishing traffic management mechanism timely and effectively, building multi-mode traffic networks, improving intelligent traffic systems and so on.

Keywords: traffic resilience, multi-mode transportation system, public traffic, transportation demand

Procedia PDF Downloads 352
3168 Drugs, Silk Road, Bitcoins

Authors: Lali Khurtsia, Vano Tsertsvadze

Abstract:

Georgian drug policy is directed to reduce the supply of drugs. Retrospective analysis has shown that law enforcement activities have been followed by the expulsion of particular injecting drugs. The demand remains unchanged and drugs are substituted by the hand-made, even more dangerous homemade drugs entered the market. To find out expected new trends on the Georgian drug market, qualitative study was conducted with Georgian drug users to determine drug supply routes. It turned out that drug suppliers and consumers for safety reasons and to protect their anonymity, use Skype to make deals. IT in illegal drug trade is even more sophisticated in the worldwide. Trading with Bitcoins in the Darknet ensures high confidentiality of money transactions and the safe circulation of drugs. In 2014 largest Bitcoin mining enterprise in the world was built in Georgia. We argue that the use of Bitcoins and Darknet by Georgian drug consumers and suppliers will be an incentive to response adequately to the government's policy of restricting supply in order to satisfy market demand for drugs.

Keywords: bitcoin, darknet, drugs, policy

Procedia PDF Downloads 443
3167 Contribution of Geomatics Technology in the Capability to Implement an On-Demand Transport in Oran Wilaya (the Northwestern of Algeria)

Authors: Brahmia Nadjet

Abstract:

The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient. They rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible for the advance reservation, planning and organization, and studying the different ODT criteria (organizational, technical, geographical, etc.). As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This paper presents the study of an ODT implementation in the west of Algeria, by developing the geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS). So, we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.

Keywords: ODT, geomatics, GIS, transport systems

Procedia PDF Downloads 474
3166 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model

Procedia PDF Downloads 317
3165 Multiobjective Economic Dispatch Using Optimal Weighting Method

Authors: Mandeep Kaur, Fatehgarh Sahib

Abstract:

The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.

Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method

Procedia PDF Downloads 153
3164 Sustainable Water Supply: Rainwater Harvesting as Flood Reduction Measures in Ibadan, Nigeria

Authors: Omolara Lade, David Oloke

Abstract:

Ibadan City suffers serious water supply problems; cases of dry taps are common in virtually every part of the City. The scarcity of piped water has made communities find alternative water sources; groundwater sources being a ready source. These wells are prone to pollution due to the close proximity of septic tanks to wells, disposal of solid or liquid wastes in pits, abandoned boreholes or even stream channels and landfills. Storms and floods in Ibadan have increased with consequent devastating effects claiming over 120 lives and displacing 600 people on August 2011 alone. In this study, an analysis of the water demand and sources of supply for the city was carried out through questionnaire survey and collection of data from City’s main water supply - Water Corporation of Oyo State (WCOS), groundwater sources were explored and 30 years rainfall data were collected from Meteorological station in Ibadan. 1067 questionnaire were administered at household level with a response rate of 86.7 %. A descriptive analysis of the survey revealed that 77.1 % of the respondents did not receive water at all from WCOS while 83.8 % depend on groundwater sources. Analysis of data from WCOS revealed that main water supply is inadequate as < 10 % of the population water demand was met. Rainfall intensity is highest in June with a mean value of 188 mm, which can be harvested at community—based level and used to complement the population water demand. Rainwater harvesting if planned, and managed properly will become a valuable alternative source of managing urban flood and alleviating water scarcity in the city.

Keywords: Ibadan, rainwater harvesting, sustainable water, urban flooding

Procedia PDF Downloads 188
3163 Optimizing Load Shedding Schedule Problem Based on Harmony Search

Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar

Abstract:

From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.

Keywords: optimization, harmony algorithm, load shedding, classification

Procedia PDF Downloads 399
3162 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 85
3161 ATM Location Problem and Cash Management in ATM's

Authors: M. Erol Genevois, D. Celik, H. Z. Ulukan

Abstract:

Automated teller machines (ATMs) can be considered among one of the most important service facilities in the banking industry. The investment in ATMs and the impact on the banking industry is growing steadily in every part of the world. The banks take into consideration many factors like safety, convenience, visibility, cost in order to determine the optimum locations of ATMs. Today, ATMs are not only available in bank branches but also at retail locations. Another important factor is the cash management in ATMs. A cash demand model for every ATM is needed in order to have an efficient cash management system. This forecasting model is based on historical cash demand data which is highly related to the ATMs location. So, the location and the cash management problem should be considered together. Although the literature survey on facility location models is quite large, it is surprising that there are only few studies which handle together ATMs location and cash management problem. In order to fulfill the gap, this paper provides a general review on studies, efforts and development in ATMs location and cash management problem.

Keywords: ATM location problem, cash management problem, ATM cash replenishment problem, literature review in ATMs

Procedia PDF Downloads 484
3160 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 158
3159 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives

Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes

Abstract:

The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.

Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system

Procedia PDF Downloads 124
3158 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 177
3157 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 119
3156 Reliability, Availability and Capacity Analysis of Power Plants in Kuwait

Authors: Mehmet Savsar

Abstract:

One of the most important factors affecting power plant performance is the reliability of the turbine units operated under different conditions. Reliability directly affects plant availability and performance. Therefore, it is very important to be able to analyze turbine units, as well as power plant system reliability and availability under various operational conditions. In this paper, data related to power station failures are collected and analyzed in detail for all power stations in the state of Kuwait. Failures are characterized and categorized. Reliabilities of various power plants are analyzed and availabilities are quantified. Based on calculated availabilities of all installed power plants, actual power output is estimated. Furthermore, based on the past 15 years of data, power consumption trend is determined and the demand for power in the future is forecasted. Estimated power output is compared to the forecasted demand in order to determine the need for future capacity expansion.

Keywords: power plants, reliability, availability, capacity, preventive maintenance, forecasting

Procedia PDF Downloads 359
3155 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System

Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah

Abstract:

The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.

Keywords: WIND, solar, microgrid, energy

Procedia PDF Downloads 114