Search results for: IR tracking algorithm
3885 Symmetric Arabic Language Encryption Technique Based on Modified Playfair Algorithm
Authors: Fairouz Beggas
Abstract:
Due to the large number of exchanges in the networks, the security of communications is essential. Most ways of keeping communication secure rely on encryption. In this work, a symmetric encryption technique is offered to encrypt and decrypt simple Arabic scripts based on a multi-level security. A proposed technique uses an idea of Playfair encryption with a larger table size and an additional layer of encryption to ensure more security. The idea of the proposed algorithm aims to generate a dynamic table that depends on a secret key. The same secret key is also used to create other secret keys to over-encrypt the plaintext in three steps. The obtained results show that the proposed algorithm is faster in terms of encryption/decryption speed and can resist to many types of attacks.Keywords: arabic data, encryption, playfair, symmetric algorithm
Procedia PDF Downloads 883884 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line following Using PIC and ATMEL Microcontrollers
Authors: Ibraheem K. Ibraheem
Abstract:
The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.Keywords: color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor
Procedia PDF Downloads 3983883 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection
Authors: P. Bhavya, P. R. Jayasree
Abstract:
This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink
Procedia PDF Downloads 3413882 A Matheuristic Algorithm for the School Bus Routing Problem
Authors: Cagri Memis, Muzaffer Kapanoglu
Abstract:
The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem
Procedia PDF Downloads 713881 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 3033880 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.Keywords: agricultural mobile robot, image processing, path recognition, hough transform
Procedia PDF Downloads 1463879 Improving the Security of Internet of Things Using Encryption Algorithms
Authors: Amirhossein Safi
Abstract:
Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.Keywords: internet of things, security, hybrid algorithm, privacy
Procedia PDF Downloads 4673878 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm
Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata
Abstract:
In previous study, technique to estimate a self-location by using a lunar image is proposed. We consider the improvement of the conventional method in consideration of FPGA implementation in this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time. In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.Keywords: SLIM, Artificial Bee Colony Algorithm, location estimate, evolutional triangle similarity
Procedia PDF Downloads 5183877 FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix
Authors: Soumitr Sanjay Dubey, Shubhajit Roy Chowdhury, Rahul Shrestha
Abstract:
In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz.Keywords: coordinate rotation digital computer, three angle complex rotation, triangular systolic array, QR algorithm
Procedia PDF Downloads 4153876 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding
Authors: Aiman Alshare, Sahar Qaadan
Abstract:
A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm
Procedia PDF Downloads 3623875 Frequent-Pattern Tree Algorithm Application to S&P and Equity Indexes
Authors: E. Younsi, H. Andriamboavonjy, A. David, S. Dokou, B. Lemrabet
Abstract:
Software and time optimization are very important factors in financial markets, which are competitive fields, and emergence of new computer tools further stresses the challenge. In this context, any improvement of technical indicators which generate a buy or sell signal is a major issue. Thus, many tools have been created to make them more effective. This worry about efficiency has been leading in present paper to seek best (and most innovative) way giving largest improvement in these indicators. The approach consists in attaching a signature to frequent market configurations by application of frequent patterns extraction method which is here most appropriate to optimize investment strategies. The goal of proposed trading algorithm is to find most accurate signatures using back testing procedure applied to technical indicators for improving their performance. The problem is then to determine the signatures which, combined with an indicator, outperform this indicator alone. To do this, the FP-Tree algorithm has been preferred, as it appears to be the most efficient algorithm to perform this task.Keywords: quantitative analysis, back-testing, computational models, apriori algorithm, pattern recognition, data mining, FP-tree
Procedia PDF Downloads 3613874 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test
Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri
Abstract:
This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test
Procedia PDF Downloads 3793873 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1213872 Cognitive and Environmental Factors Affecting Graduate Student Perception of Mathematics
Authors: Juanita Morris
Abstract:
The purpose of this study will examine the mediating relationships between the theories of intelligence, mathematics anxiety, gender stereotype threat, meta-cognition and math performance through the use of eye tracking technology, affecting student perception and problem-solving abilities. The participants will consist of (N=80) female graduate students. Test administered were the Abbreviated Math Anxiety Scale, Tobii Eye Tracking software, gender stereotype threat through Google images, and they will be asked to describe their problem-solving approach allowed to measure metacognition. Participants will be administered mathematics problems while having gender stereotype threat shown to them through online images while being directed to look at the eye tracking software Tobii. We will explore this by asking ‘Is mathematics anxiety associated with the theories of intelligence and gender stereotype threat and how does metacognition and math performance place a role in mediating those perspectives?’. It is hypothesized that math-anxious students are more likely affected by the gender stereotype threat and that may play a role in their performance? Furthermore, we also want to explore whether math anxious students are more likely to be an entity theorist than incremental theorist and whether those who are math anxious will be more likely to be fixated on variables associated with coefficients? Path analysis and independent samples t-test will be used to generate results for this study. We hope to conclude that both the theories of intelligence and metacognition mediate the relationship between mathematics anxiety and gender stereotype threat.Keywords: math anxiety, emotions, affective domains fo learning, cognitive underlinings
Procedia PDF Downloads 2693871 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7303870 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause
Authors: Kana Matsuyanagi
Abstract:
Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI
Procedia PDF Downloads 433869 Incorporating Priority Round-Robin Scheduler to Sustain Indefinite Blocking Issue and Prioritized Processes in Operating System
Authors: Heng Chia Ying, Charmaine Tan Chai Nie, Burra Venkata Durga Kumar
Abstract:
Process scheduling is the method of process management that determines which process the CPU will proceed with for the next task and how long it takes. Some issues were found in process management, particularly for Priority Scheduling (PS) and Round Robin Scheduling (RR). The proposed recommendations made for IPRRS are to combine the strengths of both into a combining algorithm while they draw on others to compensate for each weakness. A significant improvement on the combining technique of scheduler, Incorporating Priority Round-Robin Scheduler (IPRRS) address an algorithm for both high and low priority task to sustain the indefinite blocking issue faced in the priority scheduling algorithm and minimize the average turnaround time (ATT) and average waiting time (AWT) in RR scheduling algorithm. This paper will delve into the simple rules introduced by IPRRS and enhancements that both PS and RR bring to the execution of processes in the operating system. Furthermore, it incorporates the best aspects of each algorithm to build the optimum algorithm for a certain case in terms of prioritized processes, ATT, and AWT.Keywords: round Robin scheduling, priority scheduling, indefinite blocking, process management, sustain, turnaround time
Procedia PDF Downloads 1483868 Application of the DTC Control in the Photovoltaic Pumping System
Authors: M. N. Amrani, H. Abanou, A. Dib
Abstract:
In this paper, we proposed a strategy for optimizing the performance for a pumping structure constituted by an induction motor coupled to a centrifugal pump and improving existing results in this context. The considered system is supplied by a photovoltaic generator (GPV) through two static converters piloted in an independent manner. We opted for a maximum power point tracking (MPPT) control method based on the Neuro - Fuzzy, which is well known for its stability and robustness. To improve the induction motor performance, we use the concept of Direct Torque Control (DTC) and PID controller for motor speed to pilot the working of the induction motor. Simulations of the proposed approach give interesting results compared to the existing control strategies in this field. The model of the proposed system is simulated by MATLAB/Simulink.Keywords: solar energy, pumping photovoltaic system, maximum power point tracking, direct torque Control (DTC), PID regulator
Procedia PDF Downloads 5483867 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis
Procedia PDF Downloads 3863866 Parameter Estimation of Induction Motors by PSO Algorithm
Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad
Abstract:
After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method
Procedia PDF Downloads 6333865 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 763864 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm
Authors: Ramnath Narhete, Saket Pandey, Puran Gour
Abstract:
This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator
Procedia PDF Downloads 5793863 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1313862 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4083861 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology
Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi
Abstract:
This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter
Procedia PDF Downloads 4303860 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 1463859 A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process
Authors: Wided Batita, Stéphane Roche, Claude Caron
Abstract:
Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies —and primarily on wiki— and aims at managing the tracking of participants’ editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept.Keywords: geodesign, history, traceability, tracking of participants’ editing, WikiGIS
Procedia PDF Downloads 2473858 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3033857 Modern Imputation Technique for Missing Data in Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, Rahmatullah Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in the LFRM. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 3993856 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple
Authors: Hasan Basaran, Emre Unal
Abstract:
Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode
Procedia PDF Downloads 104