Search results for: automated monitoring system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20104

Search results for: automated monitoring system.

15364 Agile Project Management: A Real Application in a Multi-Project Research and Development Center

Authors: Aysegul Sarac

Abstract:

The aim of this study is to analyze the impacts of integrating agile development principles and practices, in particular to reduce project lead time in a multi-project environment. We analyze Arçelik Washing Machine R&D Center in which multiple projects are conducted by shared resources. In the first part of the study, we illustrate the current waterfall model system by using a value stream map. We define all activities starting from the first idea of the project to the customer and measure process time and lead time of projects. In the second part of the study we estimate potential improvements and select a set of these improvements to integrate agile principles. We aim to develop a future state map and analyze the impacts of integrating lean principles on project lead time. The main contribution of this study is that we analyze and integrate agile product development principles in a real multi-project system.

Keywords: agile project management, multi project system, project lead time, product development

Procedia PDF Downloads 310
15363 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid

Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov

Abstract:

Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.

Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics

Procedia PDF Downloads 86
15362 An Expert System for Assessment of Learning Outcomes for ABET Accreditation

Authors: M. H. Imam, Imran A. Tasadduq, Abdul-Rahim Ahmad, Fahd M. Aldosari

Abstract:

Learning outcomes of a course (CLOs) and the abilities at the time of graduation referred to as Student Outcomes (SOs) are required to be assessed for ABET accreditation. A question in an assessment must target a CLO as well as an SO and must represent a required level of competence. This paper presents the idea of an Expert System (ES) to select a proper question to satisfy ABET accreditation requirements. For ES implementation, seven attributes of a question are considered including the learning outcomes and Bloom’s Taxonomy level. A database contains all the data about a course including course content topics, course learning outcomes and the CLO-SO relationship matrix. The knowledge base of the presented ES contains a pool of questions each with tags of the specified attributes. Questions and the attributes represent expert opinions. With implicit rule base the inference engine finds the best possible question satisfying the required attributes. It is shown that the novel idea of such an ES can be implemented and applied to a course with success. An application example is presented to demonstrate the working of the proposed ES.

Keywords: expert system, student outcomes, course learning outcomes, question attributes

Procedia PDF Downloads 257
15361 Creativity as a National System: An Exploratory Model towards Enhance Innovation Ecosystems

Authors: Oscar Javier Montiel Mendez

Abstract:

The link between knowledge-creativity-innovation-entrepreneurship is well established, and broadly emphasized the importance of national innovation systems (NIS) as an approach stresses that the flow of information and technology among people, organizations and institutions are key to its process. Understanding the linkages among the actors involved in innovation is relevant to NIS. Creativity is supposed to fuel NIS, mainly focusing on a personal, group or organizational level, leaving aside the fourth one, as a national system. It is suggested that NIS takes Creativity for granted, an ex-ante stage already solved through some mechanisms, like programs for nurturing it at elementary and secondary schools, universities, or public/organizational specific programs. Or worse, that the individual already has this competence, and that the elements of the NIS will communicate between in a way that will lead to the creation of S curves, with an impact on national systems/programs on entrepreneurship, clusters, and the economy. But creativity constantly appears at any time during NIS, being the key input. Under an initial, exploratory, focused and refined literature review, based on Csikszentmihalyi’s systemic model, Amabile's componential theory, Kaufman and Beghetto’s 4C model, and the OECD’s (Organisation for Economic Co-operation and Development) NIS model (expanded), an NCS theoretical model is elaborated. Its suggested that its implementation could become a significant factor helping strengthen local, regional and national economies. The results also suggest that the establishment of a national creativity system (NCS), something that appears not been previously addressed, as a strategic/vital companion for a NIS, installing it not only as a national education strategy, but as its foundation, managing it and measuring its impact on NIS, entrepreneurship and the rest of the ecosystem, could make more effective public policies. Likewise, it should have a beneficial impact on the efforts of all the stakeholders involved and should help prevent some of the possible failures that NIS present.

Keywords: national creativity system, national innovation system, entrepreneurship ecosystem, systemic creativity

Procedia PDF Downloads 439
15360 Application of Industrial Ergonomics in Vehicle Service System Design

Authors: Zhao Yu, Zhi-Nan Zhang

Abstract:

More and more interactive devices are used in the transportation service system. Our mobile phones, on-board computers, and Head-Up Displays (HUDs) can all be used as the tools of the in-car service system. People can access smart systems with different terminals such as mobile phones, computers, pads and even their cars and watches. Different forms of terminals bring the different quality of interaction by the various human-computer Interaction modes. The new interactive devices require good ergonomics design at each stage of the whole design process. According to the theory of human factors and ergonomics, this paper compared three types of interactive devices by four driving tasks. Forty-eight drivers were chosen to experience these three interactive devices (mobile phones, on-board computers, and HUDs) by a simulate driving process. The subjects evaluated ergonomics performance and subjective workload after the process. And subjects were encouraged to support suggestions for improving the interactive device. The result shows that different interactive devices have different advantages in driving tasks, especially in non-driving tasks such as information and entertainment fields. Compared with mobile phones and onboard groups, the HUD groups had shorter response times in most tasks. The tasks of slow-up and the emergency braking are less accurate than the performance of a control group, which may because the haptic feedback of these two tasks is harder to distinguish than the visual information. Simulated driving is also helpful in improving the design of in-vehicle interactive devices. The paper summarizes the ergonomics characteristics of three in-vehicle interactive devices. And the research provides a reference for the future design of in-vehicle interactive devices through an ergonomic approach to ensure a good interaction relationship between the driver and the in-vehicle service system.

Keywords: human factors, industrial ergonomics, transportation system, usability, vehicle user interface

Procedia PDF Downloads 143
15359 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks

Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel

Abstract:

The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.

Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy

Procedia PDF Downloads 304
15358 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 114
15357 Enhancing Power System Resilience: An Adaptive Under-Frequency Load Shedding Scheme Incorporating PV Generation and Fast Charging Stations

Authors: Sami M. Alshareef

Abstract:

In the rapidly evolving energy landscape, the integration of renewable energy sources and the electrification of transportation are essential steps toward achieving sustainability goals. However, these advancements introduce new challenges, particularly in maintaining frequency stability due to variable photovoltaic (PV) generation and the growing demand for fast charging stations. The variability of photovoltaic (PV) generation due to weather conditions can disrupt the balance between generation and load, resulting in frequency deviations. To ensure the stability of power systems, it is imperative to develop effective under frequency load-shedding schemes. This research proposal presents an adaptive under-frequency load shedding scheme based on the power swing equation, designed explicitly for the IEEE-9 Bus Test System, that includes PV generation and fast charging stations. This research aims to address these challenges by developing an advanced scheme that dynamically disconnects fast charging stations based on power imbalances. The scheme prioritizes the disconnection of stations near affected areas to expedite system frequency stabilization. To achieve these goals, the research project will leverage the power swing equation, a widely recognized model for analyzing system dynamics during under-frequency events. By utilizing this equation, the proposed scheme will adaptively adjust the load-shedding process in real-time to maintain frequency stability and prevent power blackouts. The research findings will support the transition towards sustainable energy systems by ensuring a reliable and uninterrupted electricity supply while enhancing the resilience and stability of power systems during under-frequency events.

Keywords: load shedding, fast charging stations, pv generation, power system resilience

Procedia PDF Downloads 88
15356 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets

Procedia PDF Downloads 412
15355 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter

Authors: Shunsuke Fujiwara, Takashi Kaburagi, Kazuyuki Kobayashi, Kajiro Watanabe, Yosuke Kurihara

Abstract:

This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions.

Keywords: bidirectional microphone, pressure pulse wave meter, health condition, novel sensor device

Procedia PDF Downloads 562
15354 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 98
15353 Development of E-Tendering Models for Nigerian Public Procuring Entities

Authors: Bello Abdullahi, Kabir Bala, Yahaya M. Ibrahim, Ahmed D. Ibrahim

Abstract:

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent, and more prone to manipulations and errors. However, the advent of the Internet and its associated technologies has led to the development of numerous e-Tendering systems that addressed many of the problems associated with the manual paper-based tendering system. Currently, in Nigeria, the public tendering processes are largely conducted based on manual paper-based system that is bedevilled by a number of problems such as inordinate delays, inefficiencies, manipulation of the tender evaluation process, corruption, lack of transparency and competition, among other problems. These problems can be addressed through the adoption of existing web-based e-Tendering systems which are known to address most of these problems. However, these existing e-Tendering systems that have been developed are not based on the Nigerian legal procurement processes and as such their suitability for local application is very limited. This paper is part of a larger study that attempt to address this problem through the development of an e-Tendering system that is based on the requirements of the Nigerian public procuring entities. In this paper, the identified tendering processes commonly used by Nigerian public procuring entities in the selection of construction sources are presented. A multi-methods research approach was used to identify those tendering processes. Specifically, 19 existing business use cases used by Nigerian public procuring entities were identified and 61 system use cases were prescribed based on the identified business use cases. The use cases were used as the basis for the development of domain and software conceptual models. The models were successfully used to guide the development of an e-Tendering system called NPS-eTender. Ripple and Unified Process were adopted as the software development methodologies.

Keywords: e-tendering, e-procurement, requirement model, conceptual model, public sector tendering, public procurement

Procedia PDF Downloads 204
15352 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 137
15351 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan

Authors: Yi-Hao Pai, Wen-Feng Chen

Abstract:

The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.

Keywords: agricultural waste, gasification, energy conversion, pomelo garden

Procedia PDF Downloads 147
15350 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 367
15349 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode

Authors: Dalia Salem, Detlef Schulz

Abstract:

As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.

Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation

Procedia PDF Downloads 75
15348 Alternative Systems of Drinking Water Supply Using Rainwater Harvesting for Small Rural Communities with Zero Greenhouse Emissions

Authors: Martin Mundo-Molina

Abstract:

In Mexico, there are many small rural communities with serious water supply deficiencies. In Chiapas, Mexico, there are 19,972 poor rural communities, 15,712 of which have fewer than 100 inhabitants. The lack of a constant water supply is most severe in the highlands of Chiapas where the population is made up mainly of indigenous groups. The communities are on mountainous terrain with a widely dispersed population. These characteristics combine to make the provision of public utilities, such as water, electricity and sewerage, difficult with conventional means. The introduction of alternative, low-cost technologies represents means of supplying water such as through fog and rain catchment with zero greenhouse emissions. In this paper is presented the rainwater harvesting system (RWS) constructed in Yalentay, Chiapas Mexico. The RWS is able to store 1.2 M liters of water to provide drinking water to small rural indigenous communities of 500 people in the drought stage. Inside the system of rainwater harvesting there isn't photosynthesis in order to conserve water for long periods. The natural filters of the system of rainwater harvesting guarantee the drinking water for using to the community. The combination of potability and low cost makes rain collection a viable alternative for rural areas, weather permitting. The Mexican Institute of Water Technology and Chiapas University constructed a rainwater harvesting system in Yalentay Chiapas, it consists of four parts: 1. Roof of aluminum, for collecting rainwater, 2. Underground-cistern, divided in two tanks, 3. Filters, to improve the water quality and 4. The system of rainwater harvesting dignified the lives of people in Yalentay, saves energy, prevents the emission of greenhouse gases into the atmosphere, conserves natural resources such as water and air.

Keywords: appropriate technologies, climate change, greenhouse gases, rainwater harvesting

Procedia PDF Downloads 411
15347 The M Health Paradigm for the Chronic Care Management of Obesity: New Opportunities in Clinical Psychology and Medicine

Authors: Gianluca Castelnuovo, Gian Mauro Manzoni, Giada Pietrabissa, Stefania Corti, Emanuele Giusti, Roberto Cattivelli, Enrico Molinari, Susan Simpson

Abstract:

Obesity is currently an important public health problem of epidemic proportions (globesity). Moreover Binge Eating Disorder (BED) is typically connected with obesity, even if not occurring exclusively in conjunction with overweight conditions. Typically obesity with BED requires a longer term treatment in comparison with simple obesity. Rehabilitation interventions that aim at improving weight-loss, reducing obesity-related complications and changing dysfunctional behaviors, should ideally be carried out in a multidisciplinary context with a clinical team composed of psychologists, dieticians, psychiatrists, endocrinologists, nutritionists, physiotherapists, etc. Long-term outpatient multidisciplinary treatments are likely to constitute an essential aspect of rehabilitation, due to the growing costs of a limited inpatient approach. Internet-based technologies can improve long-term obesity rehabilitation within a collaborative approach. The new m health (m-health, mobile health) paradigm, defined as clinical practices supported by up to date mobile communication devices, could increase compliance- engagement and contribute to a significant cost reduction in BED and obesity rehabilitation. Five psychological components need to be considered for successful m Health-based obesity rehabilitation in order to facilitate weight-loss.1) Self-monitoring. Portable body monitors, pedometers and smartphones are mobile and, therefore, can be easily used, resulting in continuous self-monitoring. 2) Counselor feedback and communication. A functional approach is to provide online weight-loss interventions with brief weekly or monthly counselor or psychologist visits. 3) Social support. A group treatment format is typically preferred for behavioral weight-loss interventions. 4) Structured program. Technology-based weight-loss programs incorporate principles of behavior therapy and change with structured weekly protocolos including nutrition, exercise, stimulus control, self-regulation strategies, goal-setting. 5) Individually tailored program. Interventions specifically designed around individual’s goals typically record higher rates of adherence and weight loss. Opportunities and limitations of m health approach in clinical psychology for obesity and BED are discussed, taking into account future research directions in this promising area.

Keywords: obesity, rehabilitation, out-patient, new technologies, tele medicine, tele care, m health, clinical psychology, psychotherapy, chronic care management

Procedia PDF Downloads 479
15346 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 367
15345 Assessment of Surface Water Quality near Landfill Sites Using a Water Pollution Index

Authors: Alejandro Cittadino, David Allende

Abstract:

Landfilling of municipal solid waste is a common waste management practice in Argentina as in many parts of the world. There is extensive scientific literature on the potential negative effects of landfill leachates on the environment, so it’s necessary to be rigorous with the control and monitoring systems. Due to the specific municipal solid waste composition in Argentina, local landfill leachates contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), as well as ammonia-nitrogen, small trace of some heavy metals, and inorganic salts. In order to investigate the surface water quality in the Reconquista river adjacent to the Norte III landfill, water samples both upstream and downstream the dumpsite are quarterly collected and analyzed for 43 parameters including organic matter, heavy metals, and inorganic salts, as required by the local standards. The objective of this study is to apply a water quality index that considers the leachate characteristics in order to determine the quality status of the watercourse through the landfill. The water pollution index method has been widely used in water quality assessments, particularly rivers, and it has played an increasingly important role in water resource management, since it provides a number simple enough for the public to understand, that states the overall water quality at a certain location and time. The chosen water quality index (ICA) is based on the values of six parameters: dissolved oxygen (in mg/l and percent saturation), temperature, biochemical oxygen demand (BOD5), ammonia-nitrogen and chloride (Cl-) concentration. The index 'ICA' was determined both upstream and downstream the Reconquista river, being the rating scale between 0 (very poor water quality) and 10 (excellent water quality). The monitoring results indicated that the water quality was unaffected by possible leachate runoff since the index scores upstream and downstream were ranked in the same category, although in general, most of the samples were classified as having poor water quality according to the index’s scale. The annual averaged ICA index scores (computed quarterly) were 4.9, 3.9, 4.4 and 5.0 upstream and 3.9, 5.0, 5.1 and 5.0 downstream the river during the study period between 2014 and 2017. Additionally, the water quality seemed to exhibit distinct seasonal variations, probably due to annual precipitation patterns in the study area. The ICA water quality index appears to be appropriate to evaluate landfill impacts since it accounts mainly for organic pollution and inorganic salts and the absence of heavy metals in the local leachate composition, however, the inclusion of other parameters could be more decisive in discerning the affected stream reaches from the landfill activities. A future work may consider adding to the index other parameters like total organic carbon (TOC) and total suspended solids (TSS) since they are present in the leachate in high concentrations.

Keywords: landfill, leachate, surface water, water quality index

Procedia PDF Downloads 159
15344 Multi-Criteria Decision Support System for Modeling of Civic Facilities Using GIS Applications: A Case Study of F-11, Islamabad

Authors: Asma Shaheen Hashmi, Omer Riaz, Khalid Mahmood, Fahad Ullah, Tanveer Ahmad

Abstract:

The urban landscapes are being change with the population growth and advancements in new technologies. The urban sprawl pattern and utilizes are related to the local socioeconomic and physical condition. Urban policy decisions are executed mostly through spatial planning. A decision support system (DSS) is very powerful tool which provides flexible knowledge base method for urban planning. An application was developed using geographical information system (GIS) for urban planning. A scenario based DSS was developed to integrate the hierarchical muti-criteria data of different aspects of urban landscape. These were physical environment, the dumping site, spatial distribution of road network, gas and water supply lines, and urban watershed management, selection criteria for new residential, recreational, commercial and industrial sites. The model provided a framework to incorporate the sustainable future development. The data can be entered dynamically by planners according to the appropriate criteria for the management of urban landscapes.

Keywords: urban, GIS, spatial, criteria

Procedia PDF Downloads 639
15343 Getting to Know ICU Nurses and Their Duties

Authors: Masih Nikgou

Abstract:

ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.

Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite

Procedia PDF Downloads 84
15342 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 138
15341 Improving Sample Analysis and Interpretation Using QIAGENs Latest Investigator STR Multiplex PCR Assays with a Novel Quality Sensor

Authors: Daniel Mueller, Melanie Breitbach, Stefan Cornelius, Sarah Pakulla-Dickel, Margaretha Koenig, Anke Prochnow, Mario Scherer

Abstract:

The European STR standard set (ESS) of loci as well as the new expanded CODIS core loci set as recommended by the CODIS Core Loci Working Group, has led to a higher standardization and harmonization in STR analysis across borders. Various multiplex PCRs assays have since been developed for the analysis of these 17 ESS or 23 CODIS expansion STR markers that all meet high technical demands. However, forensic analysts are often faced with difficult STR results and the questions thereupon. What is the reason that no peaks are visible in the electropherogram? Did the PCR fail? Was the DNA concentration too low? QIAGEN’s newest Investigator STR kits contain a novel Quality Sensor (QS) that acts as internal performance control and gives useful information for evaluating the amplification efficiency of the PCR. QS indicates if the reaction has worked in general and furthermore allows discriminating between the presence of inhibitors or DNA degradation as a cause for the typical ski slope effect observed in STR profiles of such challenging samples. This information can be used to choose the most appropriate rework strategy.Based on the latest PCR chemistry called FRM 2.0, QIAGEN now provides the next technological generation for STR analysis, the Investigator ESSplex SE QS and Investigator 24plex QS Kits. The new PCR chemistry ensures robust and fast PCR amplification with improved inhibitor resistance and easy handling for a manual or automated setup. The short cycling time of 60 min reduces the duration of the total PCR analysis to make a whole workflow analysis in one day more likely. To facilitate the interpretation of STR results a smart primer design was applied for best possible marker distribution, highest concordance rates and a robust gender typing.

Keywords: PCR, QIAGEN, quality sensor, STR

Procedia PDF Downloads 499
15340 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 46
15339 A System For A Sustainable Electronic Waste Marketplace

Authors: Arya Sarukkai

Abstract:

Due to increased technological advances and the high use of phones, tablets, computers, and other electronics, we continue to see rapid growth in the volume of e-waste. There are millions just throwing out their old devices, millions who have many devices and don’t know what to do with them, and there are millions who would benefit from receiving those devices. The thesis of this paper is that by creating an ecosystem of donors and recipients and providing the right incentives, we can reduce e-waste. We discuss a system for sustainable e-waste by building a marketplace between donors and recipients. We also summarize experimental results comparing different incentives and present a live web service that allows for e-waste supplies to reach schools and nonprofit institutions.

Keywords: E-waste ecosystems, marketplaces, e-waste web app, online services

Procedia PDF Downloads 204
15338 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed F. Zobaa

Abstract:

Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm

Procedia PDF Downloads 363
15337 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 261
15336 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE

Authors: Oualid Walid Ben Ali

Abstract:

Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.

Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE

Procedia PDF Downloads 493
15335 A Novel Parametric Chaos-Based Switching System PCSS for Image Encryption

Authors: Mohamed Salah Azzaz, Camel Tanougast, Tarek Hadjem

Abstract:

In this paper, a new low-cost image encryption technique is proposed and analyzed. The developed chaos-based key generator provides complex behavior and can change it automatically via a random-like switching rule. The designed encryption scheme is called PCSS (Parametric Chaos-based Switching System). The performances of this technique were evaluated in terms of data security and privacy. Simulation results have shown the effectiveness of this technique, and it can thereafter, ready for a hardware implementation.

Keywords: chaos, encryption, security, image

Procedia PDF Downloads 478