Search results for: computer generated holograms
950 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate
Authors: Syfur Rahman, Mohammad J. Khattak
Abstract:
Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash
Procedia PDF Downloads 143949 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications
Authors: Jacob Wahl, Jane Zhang
Abstract:
This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming
Procedia PDF Downloads 143948 Improvement of Greenhouse Gases Bio-Fixation by Microalgae Using a “Plasmon-Enhanced Photobioreactor”
Authors: Francisco Pereira, António Augusto Vicente, Filipe Vaz, Joel Borges, Pedro Geada
Abstract:
Light is a growth-limiting factor in microalgae cultivation, where factors like spectral components, intensity, and duration, often characterized by its wavelength, are well-reported to have a substantial impact on cell growth rates and, consequently, photosynthetic performance and mitigation of CO2, one of the most significant greenhouse gases (GHGs). Photobioreactors (PBRs) are commonly used to grow microalgae under controlled conditions, but they often fail to provide an even light distribution to the cultures. For this reason, there is a pressing need for innovations aiming at enhancing the efficient utilization of light. So, one potential approach to address this issue is by implementing plasmonic films, such as the localized surface plasmon resonance (LSPR). LSPR is an optical phenomenon connected to the interaction of light with metallic nanostructures. LSPR excitation is characterized by the oscillation of unbound conduction electrons of the nanoparticles coupled with the electromagnetic field from incident light. As a result of this excitation, highly energetic electrons and a strong electromagnetic field are generated. These effects lead to an amplification of light scattering, absorption, and extinction of specific wavelengths, contingent on the nature of the employed nanoparticle. Thus, microalgae might benefit from this biotechnology as it enables the selective filtration of inhibitory wavelengths and harnesses the electromagnetic fields produced, which could lead to enhancements in both biomass and metabolite productivity. This study aimed at implementing and evaluating a “plasmon-enhanced PBR”. The goal was to utilize LSPR thin films to enhance the growth and CO2 bio-fixation rate of Chlorella vulgaris. The internal/external walls of the PBRs were coated with a TiO2 matrix containing different nanoparticles (Au, Ag, and Au-Ag) in order to evaluate the impact of this approach on microalgae’s performance. Plasmonic films with distinct compositions resulted in different Chlorella vulgaris growth, ranging from 4.85 to 6.13 g.L-1. The highest cell concentrations were obtained with the metallic Ag films, demonstrating a 14% increase compared to the control condition. Moreover, it appeared to be no differences in growth between PBRs with inner and outer wall coatings. In terms of CO2 bio-fixation, distinct rates were obtained depending on the coating applied, ranging from 0.42 to 0.53 gCO2L-1d-1. Ag coating was demonstrated to be the most effective condition for carbon fixation by C. vulgaris. The impact of LSPR films on the biochemical characteristics of biomass (e.g., proteins, lipids, pigments) was analysed as well. Interestingly, Au coating yielded the most significant enhancements in protein content and total pigments, with increments of 15 % and 173 %, respectively, when compared to the PBR without any coating (control condition). Overall, the incorporation of plasmonic films in PBRs seems to have the potential to improve the performance and efficiency of microalgae cultivation, thereby representing an interesting approach to increase both biomass production and GHGs bio-mitigation.Keywords: CO₂ bio-fixation, plasmonic effect, photobioreactor, photosynthetic microalgae
Procedia PDF Downloads 92947 A.T.O.M.- Artificial Intelligent Omnipresent Machine
Authors: R. Kanthavel, R. Yogesh Kumar, T. Narendrakumar, B. Santhosh, S. Surya Prakash
Abstract:
This paper primarily focuses on developing an affordable personal assistant and the implementation of it in the field of Artificial Intelligence (AI) to create a virtual assistant/friend. The problem in existing home automation techniques is that it requires the usage of exact command words present in the database to execute the corresponding task. Our proposed work is ATOM a.k.a ‘Artificial intelligence Talking Omnipresent Machine’. Our inspiration came from an unlikely source- the movie ‘Iron Man’ in which a character called J.A.R.V.I.S has omnipresence, and device controlling capability. This device can control household devices in real time and send the live information to the user. This device does not require the user to utter the exact commands specified in the database as it can capture the keywords from the uttered commands, correlates the obtained keywords and perform the specified task. This ability to compare and correlate the keywords gives the user the liberty to give commands which are not necessarily the exact words provided in the database. The proposed work has a higher flexibility (due to its keyword extracting ability from the user input) comparing to the existing work Intelligent Home automation System (IHAS), is more accurate, and is much more affordable as it makes use of WI-FI module and raspberry pi 2 instead of ZigBee and a computer respectively.Keywords: home automation, speech recognition, voice control, personal assistant, artificial intelligence
Procedia PDF Downloads 340946 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 99945 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea
Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal
Abstract:
Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism
Procedia PDF Downloads 268944 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 320943 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)
Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong
Abstract:
Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts
Procedia PDF Downloads 150942 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model
Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam
Abstract:
Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.Keywords: COPERT Model, emission estimation, PM10, vehicular emission
Procedia PDF Downloads 267941 Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon
Authors: Arkadiusz Urzędowski, Dorota Wójcicka-Migasiuk, Andrzej Sachajdak, Magdalena Paśnikowska-Łukaszuk
Abstract:
Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined.Keywords: heat transfer, surface roughness, surface emissivity, radiation
Procedia PDF Downloads 104940 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method
Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng
Abstract:
Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.Keywords: shot peen forming, process parameter, response surface model, numerical simulation
Procedia PDF Downloads 94939 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 86938 Sentiment Analysis of Tourist Online Reviews Concerning Lisbon Cultural Patrimony, as a Contribute to the City Attractiveness Evaluation
Authors: Joao Ferreira Do Rosario, Maria De Lurdes Calisto, Ana Teresa Machado, Nuno Gustavo, Rui Gonçalves
Abstract:
The tourism sector is increasingly important to the economic performance of countries and a relevant theme to academic research, increasing the importance of understanding how and why tourists evaluate tourism locations. The city of Lisbon is currently a tourist destination of excellence in the European and world-wide panorama, registering a significant growth of the economic weight of its tourist activities in the Gross Added Value of the region. Although there is research on the feedback of those who visit tourist sites and different methodologies for studying tourist sites have been applied, this research seeks to be innovative in the objective of obtaining insights on the competitiveness in terms of attractiveness of the city of Lisbon as a tourist destination, based the feedback of tourists in the Facebook pages of the most visited museums and monuments of Lisbon, an interpretation that is relevant in the development of strategies of tourist attraction. The intangible dimension of the tourism offer, due to its unique condition of simultaneous production and consumption, makes eWOM particularly relevant. The testimony of consumers is thus a decisive factor in the decision-making and buying process in tourism. Online social networks are one of the most used platforms for tourists to evaluate the attractiveness's points of a tourism destination (e.g. cultural and historical heritage), with this user-generated feedback enabling relevant information about the customer-tourists. This information is related to the tourist experience representing the true voice of the customer. Furthermore, this voice perceived by others as genuine, opposite to marketing messages, may have a powerful word-of-mouth influence on other potential tourists. The relevance of online reviews sharing, however, becomes particularly complex, considering social media users’ different profiles or the possible and different sources of information available, as well as their associated reputation associated with each source. In the light of these trends, our research focuses on the tourists’ feedback on Facebook pages of the most visited museums and monuments of Lisbon that contribute to its attractiveness as a tourism destination. Sentiment Analysis is the methodology selected for this research, using public available information in the online context, which was deemed as an appropriate non-participatory observation method. Data will be collected from two museums (Museu dos Coches and Museu de Arte Antiga) and three monuments ((Mosteiro dos Jerónimos, Torre de Belém and Panteão Nacional) Facebook pages during a period of one year. The research results will help in the evaluation of the considered places by the tourists, their contribution to the city attractiveness and present insights helpful for the management decisions regarding this museums and monuments. The results of this study will also contribute to a better knowledge of the tourism sector, namely the identification of attributes in the evaluation and choice of the city of Lisbon as a tourist destination. Further research will evaluate the Lisbon attraction points for tourists in different categories beyond museums and monuments, will also evaluate the tourist feedback from other sources like TripAdvisor and apply the same methodology in other cities and country regions.Keywords: Lisbon tourism, opinion mining, sentiment analysis, tourism location attractiveness evaluation
Procedia PDF Downloads 244937 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 300936 The Relations between Language Diversity and Similarity and Adults' Collaborative Creative Problem Solving
Authors: Z. M. T. Lim, W. Q. Yow
Abstract:
Diversity in individual problem-solving approaches, culture and nationality have been shown to have positive effects on collaborative creative processes in organizational and scholastic settings. For example, diverse graduate and organizational teams consisting of members with both structured and unstructured problem-solving styles were found to have more creative ideas on a collaborative idea generation task than teams that comprised solely of members with either structured or unstructured problem-solving styles. However, being different may not always provide benefits to the collaborative creative process. In particular, speaking different languages may hinder mutual engagement through impaired communication and thus collaboration. Instead, sharing similar languages may have facilitative effects on mutual engagement in collaborative tasks. However, no studies have explored the relations between language diversity and adults’ collaborative creative problem solving. Sixty-four Singaporean English-speaking bilingual undergraduates were paired up into similar or dissimilar language pairs based on the second language they spoke (e.g., for similar language pairs, both participants spoke English-Mandarin; for dissimilar language pairs, one participant spoke English-Mandarin and the other spoke English-Korean). Each participant completed the Ravens Progressive Matrices Task individually. Next, they worked in pairs to complete a collaborative divergent thinking task where they used mind-mapping techniques to brainstorm ideas on a given problem together (e.g., how to keep insects out of the house). Lastly, the pairs worked on a collaborative insight problem-solving task (Triangle of Coins puzzle) where they needed to flip a triangle of ten coins around by moving only three coins. Pairs who had prior knowledge of the Triangle of Coins puzzle were asked to complete an equivalent Matchstick task instead, where they needed to make seven squares by moving only two matchsticks based on a given array of matchsticks. Results showed that, after controlling for intelligence, similar language pairs completed the collaborative insight problem-solving task faster than dissimilar language pairs. Intelligence also moderated these relations. Among adults of lower intelligence, similar language pairs solved the insight problem-solving task faster than dissimilar language pairs. These differences in speed were not found in adults with higher intelligence. No differences were found in the number of ideas generated in the collaborative divergent thinking task between similar language and dissimilar language pairs. In conclusion, sharing similar languages seem to enrich collaborative creative processes. These effects were especially pertinent to pairs with lower intelligence. This provides guidelines for the formation of groups based on shared languages in collaborative creative processes. However, the positive effects of shared languages appear to be limited to the insight problem-solving task and not the divergent thinking task. This could be due to the facilitative effects of other factors of diversity as found in previous literature. Background diversity, for example, may have a larger facilitative effect on the divergent thinking task as compared to the insight problem-solving task due to the varied experiences individuals bring to the task. In conclusion, this study contributes to the understanding of the effects of language diversity in collaborative creative processes and challenges the general positive effects that diversity has on these processes.Keywords: bilingualism, diversity, creativity, collaboration
Procedia PDF Downloads 318935 Environmental Management Accounting Practices and Policies within the Higher Education Sector: An Exploratory Study of the University of KwaZulu Natal
Authors: Kiran Baldavoo, Mishelle Doorasamy
Abstract:
Universities have a role to play in the preservation of the environment, and the study attempted to evaluate the environmental management accounting (EMA) processes at UKZN. UKZN, a South African university, generates the same direct and indirect environmental impacts as the higher education sector worldwide. This is significant within the context of the South African environment which is constantly plagued by having to effectively manage the already scarce resources of water and energy, evident through the imposition of water and energy restrictions over the recent years. The study’s aim is to increase awareness of having a structured approach to environmental management in order to achieve the strategic environmental goals of the university. The research studied the experiences of key managers within UKZN, with the purpose of exploring the potential factors which influence the decision to adopt and apply EMA within the higher education sector. The study comprised two objectives, namely understanding the current state of accounting practices for managing major environmental costs and identifying factors influencing EMA adoption within the university. The study adopted a case study approach, comprising semi-structured interviews of key personnel involved in Management Accounting, Environmental Management, and Academic Schools within the university. Content analysis was performed on the transcribed interview data. A Theoretical Framework derived from literature was adopted to guide data collection and focus the study. Contingency and Institutional theory was the resultant basis of the derived framework. The findings of the first objective revealed that there was a distinct lack of EMA utilization within the university. There was no distinct policy on EMA, resulting in minimal environmental cost information being brought to the attention of senior management. The university embraced the principles of environmental sustainability; however, efforts to improve internal environmental accountability primarily from an accounting perspective was absent. The findings of the second objective revealed that five key barriers contributed to the lack of EMA utilization within the university. The barriers being attitudinal, informational, institutional, technological, and lack of incentives (financial). The results and findings of this study supported the use and application of EMA within the higher education sector. Participants concurred that EMA was underutilized and if implemented, would realize significant benefits for both the university and environment. Environmental management accounting is being widely acknowledged as a key management tool that can facilitate improved financial and environmental performance via the concept of enhanced environmental accountability. Historically research has been concentrated primarily on the manufacturing industry, due to it generating the greatest proportion of environmental impacts. Service industries are also an integral component of environmental management as they contribute significant environmental impacts, both direct and indirect. Educational institutions such as universities form part of the service sector and directly impact on the environment through the consumption of paper, energy, and water and solid waste generated, with the associated demands.Keywords: environmental management accounting, environmental impacts, higher education, Southern Africa
Procedia PDF Downloads 129934 Influence of Instructors in Engaging Online Graduate Students in Active Learning in the United States
Authors: Ehi E. Aimiuwu
Abstract:
As of 2017, many online learning professionals, institutions, and journals are still wondering how instructors can keep student engaged in the online learning environment to facilitate active learning effectively. The purpose of this qualitative single-case and narrative research is to explore whether online professors understand their role as mentors and facilitators of students’ academic success by keeping students engaged in active learning based on personalized experience in the field. Data collection tools that were used in the study included an NVivo 12 Plus qualitative software, an interview protocol, a digital audiotape, an observation sheet, and a transcription. Seven online professors in the United States from LinkedIn and residencies were interviewed for this study. Eleven online teaching techniques from previous research were used as the study framework. Data analysis process, member checking, and key themes were used to achieve saturation. About 85.7% of professors agreed on rubric as the preferred online grading technique. About 57.1% agreed on professors logging in daily, students logging in about 2-5 times weekly, knowing students to increase accountability, email as preferred communication tool, and computer access for adequate online learning. About 42.9% agreed on syllabus for clear class expectations, participation to show what has been learned, and energizing students for creativity.Keywords: class facilitation, class management, online teaching, online education, pedagogy
Procedia PDF Downloads 119933 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.
Procedia PDF Downloads 126932 Factors Influencing Agricultural Systems Adoption Success: Evidence from Thailand
Authors: Manirath Wongsim, Ekkachai Naenudorn, Nipotepat Muangkote
Abstract:
Information Technology (IT), play an important role in business management strategies and can provide assistance in all phases of decision making. Thus, many organizations need to be seen as adopting IT, which is critical for a company to organize, manage and operate its processes. In order to implement IT successfully, it is important to understand the underlying factors that influence agricultural system's adoption success. Therefore, this research intends to study this perspective of factors that influence and impact successful IT adoption and related agricultural performance. Case study and survey methodology were adopted for this research. Case studies in two Thai- organizations were carried out. The results of the two main case studies suggested 21 factors that may have an impact on IT adoption in agriculture in Thailand, which led to the development of the preliminary framework. Next, a survey instrument was developed based on the findings from case studies. Survey questionnaires were gathered from 217 respondents from two large-scale surveys were sent to selected members of Thailand farmer, and Thailand computer to test the research framework. The results indicate that the top five critical factors for ensuring IT adoption in agricultural were: 1) network and communication facilities; 2) software; 3) hardware; 4) farmer’s IT knowledge, and; 5) training and education. Therefore, it is now clear which factors are influencing IT adoption and which of those factors are critical success factors for ensuring IT adoption in agricultural organization.Keywords: agricultural systems adoption, factors influencing IT adoption, factors affecting in agricultural adoption
Procedia PDF Downloads 166931 Empirical Study of Innovative Development of Shenzhen Creative Industries Based on Triple Helix Theory
Authors: Yi Wang, Greg Hearn, Terry Flew
Abstract:
In order to understand how cultural innovation occurs, this paper explores the interaction in Shenzhen of China between universities, creative industries, and government in creative economic using the Triple Helix framework. During the past two decades, Triple Helix has been recognized as a new theory of innovation to inform and guide policy-making in national and regional development. Universities and governments around the world, especially in developing countries, have taken actions to strengthen connections with creative industries to develop regional economies. To date research based on the Triple Helix model has focused primarily on Science and Technology collaborations, largely ignoring other fields. Hence, there is an opportunity for work to be done in seeking to better understand how the Triple Helix framework might apply in the field of creative industries and what knowledge might be gleaned from such an undertaking. Since the late 1990s, the concept of ‘creative industries’ has been introduced as policy and academic discourse. The development of creative industries policy by city agencies has improved city wealth creation and economic capital. It claims to generate a ‘new economy’ of enterprise dynamics and activities for urban renewal through the arts and digital media, via knowledge transfer in knowledge-based economies. Creative industries also involve commercial inputs to the creative economy, to dynamically reshape the city into an innovative culture. In particular, this paper will concentrate on creative spaces (incubators, digital tech parks, maker spaces, art hubs) where academic, industry and government interact. China has sought to enhance the brand of their manufacturing industry in cultural policy. It aims to transfer the image of ‘Made in China’ to ‘Created in China’ as well as to give Chinese brands more international competitiveness in a global economy. Shenzhen is a notable example in China as an international knowledge-based city following this path. In 2009, the Shenzhen Municipal Government proposed the city slogan ‘Build a Leading Cultural City”’ to show the ambition of government’s strong will to develop Shenzhen’s cultural capacity and creativity. The vision of Shenzhen is to become a cultural innovation center, a regional cultural center and an international cultural city. However, there has been a lack of attention to the triple helix interactions in the creative industries in China. In particular, there is limited knowledge about how interactions in creative spaces co-location within triple helix networks significantly influence city based innovation. That is, the roles of participating institutions need to be better understood. Thus, this paper discusses the interplay between university, creative industries and government in Shenzhen. Secondary analysis and documentary analysis will be used as methods in an effort to practically ground and illustrate this theoretical framework. Furthermore, this paper explores how are creative spaces being used to implement Triple Helix in creative industries. In particular, the new combination of resources generated from the synthesized consolidation and interactions through the institutions. This study will thus provide an innovative lens to understand the components, relationships and functions that exist within creative spaces by applying Triple Helix framework to the creative industries.Keywords: cultural policy, creative industries, creative city, triple Helix
Procedia PDF Downloads 212930 Analyzing the Investment Decision and Financing Method of the French Small and Medium-Sized Enterprises
Authors: Eliane Abdo, Olivier Colot
Abstract:
SMEs are always considered as a national priority due to their contribution to job creation, innovation and growth. Once the start-up phase is crossed with encouraging results, the company enters the phase of growth. In order to improve its competitiveness, maintain and increase its market share, the company is in the necessity even the obligation to develop its tangible and intangible investments. SMEs are generally closed companies with special and critical financial situation, limited resources and difficulty to access the capital markets; their shareholders are always living in a conflict between their independence and their need to increase capital that leads to the entry of new shareholder. The capital structure was always considered the core of research in corporate finance; moreover, the financial crisis and its repercussions on the credit’s availability, especially for SMEs make SME financing a hot topic. On the other hand, financial theories do not provide answers to capital structure’s questions; they offer tools and mode of financing that are more accessible to larger companies. Yet, SME’s capital structure can’t be independent of their governance structure. The classic financial theory supposes independence between the investment decision and the financing decision. Thus, investment determines the volume of funding, but not the split between internal or external funds. In this context, we find interesting to study the hypothesis that SMEs respond positively to the financial theories applied to large firms and to check if they are constrained by conventional solutions used by large companies. In this context, this research focuses on the analysis of the resource’s structure of SME in parallel with their investments’ structure, in order to highlight a link between their assets and liabilities structure. We founded our conceptual model based on two main theoretical frameworks: the Pecking order theory, and the Trade Off theory taking into consideration the SME’s characteristics. Our data were generated from DIANE database. Five hypotheses were tested via a panel regression to understand the type of dependence between the financing methods of 3,244 French SMEs and the development of their investment over a period of 10 years (2007-2016). The results show dependence between equity and internal financing in case of intangible investments development. Moreover, this type of business is constraint to financial debts since the guarantees provided are not sufficient to meet the banks' requirements. However, for tangible investments development, SMEs count sequentially on internal financing, bank borrowing, and new shares issuance or hybrid financing. This is compliant to the Pecking Order Theory. We, therefore, conclude that unlisted SMEs incur more financial debts to finance their tangible investments more than their intangible. However, they always prefer internal financing as a first choice. This seems to be confirmed by the assumption that the profitability of the company is negatively related to the increase of the financial debt. Thus, the Pecking Order Theory predictions seem to be the most plausible. Consequently, SMEs primarily rely on self-financing and then go, into debt as a priority to finance their financial deficit.Keywords: capital structure, investments, life cycle, pecking order theory, trade off theory
Procedia PDF Downloads 119929 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 309928 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs
Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour
Procedia PDF Downloads 100927 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 426926 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 227925 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 126924 Domain-Specific Languages Evaluation: A Literature Review and Experience Report
Authors: Sofia Meacham
Abstract:
In this abstract paper, the Domain-Specific Languages (DSL) evaluation will be presented based on existing literature and years of experience developing DSLs for several domains. The domains we worked on ranged from AI, business applications, and finances/accounting to health. In general, DSLs have been utilised in many domains to provide tailored and efficient solutions to address specific problems. Although they are a reputable method among highly technical circles and have also been used by non-technical experts with success, according to our knowledge, there isn’t a commonly accepted method for evaluating them. There are some methods that define criteria that are adaptations from the general software engineering quality criteria. Other literature focuses on the DSL usability aspect of evaluation and applies methods such as Human-Computer Interaction (HCI) and goal modeling. All these approaches are either hard to introduce, such as the goal modeling, or seem to ignore the domain-specific focus of the DSLs. From our experience, the DSLs have domain-specificity in their core, and consequently, the methods to evaluate them should also include domain-specific criteria in their core. The domain-specific criteria would require synergy between the domain experts and the DSL developers in the same way that DSLs cannot be developed without domain-experts involvement. Methods from agile and other software engineering practices, such as co-creation workshops, should be further emphasised and explored to facilitate this direction. Concluding, our latest experience and plans for DSLs evaluation will be presented and open for discussion.Keywords: domain-specific languages, DSL evaluation, DSL usability, DSL quality metrics
Procedia PDF Downloads 105923 Systematic Review of Dietary Fiber Characteristics Relevant to Appetite and Energy Intake Outcomes in Clinical Intervention Trials of Healthy Humans
Authors: K. S. Poutanen, P. Dussort, A. Erkner, S. Fiszman, K. Karnik, M. Kristensen, C. F. M. Marsaux, S. Miquel-Kergoat, S. Pentikäinen, P. Putz, R. E. Steinert, J. Slavin, D. J. Mela
Abstract:
Dietary fiber (DF) intake has been associated with lower body weight or less weight gain. These effects are generally attributed to putative effects of DF on appetite. Many intervention studies have tested the effect of DFs on appetite-related measures, with inconsistent results. However, DF includes a wide category of different compounds with diverse chemical and physical characteristics, and correspondingly diverse effects in human digestion. Thus, inconsistent results between DF consumption and appetite are not surprising. The specific contribution of different compounds with varying physico-chemical properties to appetite control and the mediating mechanisms are not well characterized. This systematic review aimed to assess the influence of specific DF characteristics, including viscosity, gel forming capacity, fermentability, and molecular weight, on appetite-related outcomes in healthy humans. Medline and FSTA databases were searched for controlled human intervention trials, testing the effects of well-characterized DFs on subjective satiety/appetite or energy intake outcomes. Studies were included only if they reported: 1) fiber name and origin, and 2) data on viscosity, gelling properties, fermentability, or molecular weight of the DF materials tested. The search generated 3001 unique records, 322 of which were selected for further consideration from title and abstract screening. Of these, 149 were excluded due to insufficient fiber characterization and 124 for other reasons (not original article, not randomized controlled trial, or no appetite related outcome), leaving 49 papers meeting all the inclusion criteria, most of which reported results from acute testing (<1 day). The eligible 49 papers described 90 comparisons of DFs in foods, beverages or supplements. DF-containing material of interest was efficacious for at least one appetite-related outcome in 51/90 comparisons. Gel-forming DF sources were most consistently efficacious but there were no clear associations between viscosity, MW or fermentability and appetite-related outcomes. A considerable number of papers had to be excluded from the review due to shortcomings in fiber characterization. To build understanding about the impact of DF on satiety/appetite specifically there should be clear hypotheses about the mechanisms behind the proposed beneficial effect of DF material on appetite, and sufficient data about the DF properties relevant for the hypothesized mechanisms to justify clinical testing. The hypothesized mechanisms should also guide the decision about relevant duration of exposure in studies, i.e. are the effects expected to occur during acute time frame (related to stomach emptying, digestion rate, etc.) or develop from sustained exposure (gut fermentation mediated mechanisms). More consistent measurement methods and reporting of fiber specifications and characterization are needed to establish reliable structure-function relationships for DF and health outcomes.Keywords: appetite, dietary fiber, physico-chemical properties, satiety
Procedia PDF Downloads 240922 Sustainable Urbanism: Model for Social Equity through Sustainable Development
Authors: Ruchira Das
Abstract:
The major Metropolises of India are resultant of Colonial manifestation of Production, Consumption and Sustenance. These cities grew, survived, and sustained on the basic whims of Colonial Power and Administrative Agendas. They were symbols of power, authority and administration. Within them some Colonial Towns remained as small towns within the close vicinity of the major metropolises and functioned as self–sufficient units until peripheral development due to tremendous pressure occurred in the metropolises. After independence huge expansion in Judiciary and Administration system resulted City Oriented Employment. A large number of people started residing within the city or within commutable distance of the city and it accelerated expansion of the cities. Since then Budgetary and Planning expenditure brought a new pace in Economic Activities. Investment in Industry and Agriculture sector generated opportunity of employment which further led towards urbanization. After two decades of Budgetary and Planning economic activities in India, a new era started in metropolitan expansion. Four major metropolises started further expansion rapidly towards its suburbs. A concept of large Metropolitan Area developed. Cities became nucleus of suburbs and rural areas. In most of the cases such expansion was not favorable to the relationship between City and its hinterland due to absence of visualization of Compact Sustainable Development. The search for solutions needs to weigh the choices between Rural and Urban based development initiatives. Policymakers need to focus on areas which will give the greatest impact. The impact of development initiatives will spread the significant benefit to all. There is an assumption that development integrates Economic, Social and Environmental considerations with equal weighing. The traditional narrower and almost exclusive focus on economic criteria as the determinant of the level of development is thus re–described and expanded. The Social and Environmental aspects are equally important as Economic aspect to achieve Sustainable Development. The arrangement of opportunities for Public, Semi – Public facilities for its citizen is very much relevant to development. It is responsibility of the administration to provide opportunities for the basic requirement of its inhabitants. Development should be in terms of both Industrial and Agricultural to maintain a balance between city and its hinterland. Thus, policy is to formulate shifting the emphasis away from Economic growth towards Sustainable Human Development. The goal of Policymaker should aim at creating environments in which people’s capabilities can be enhanced by the effective dynamic and adaptable policy. The poverty could not be eradicated simply by increasing income. The improvement of the condition of the people would have to lead to an expansion of basic human capabilities. In this scenario the suburbs/rural areas are considered as environmental burden to the metropolises. A new living has to be encouraged in the suburban or rural. We tend to segregate agriculture from the city and city life, this leads to over consumption, but this urbanism model attempts both these to co–exists and hence create an interesting overlapping of production and consumption network towards sustainable Rurbanism.Keywords: socio–economic progress, sustainability, social equity, urbanism
Procedia PDF Downloads 312921 A Study of Two Disease Models: With and Without Incubation Period
Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle
Abstract:
The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method
Procedia PDF Downloads 180