Search results for: small-sample size
1054 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA
Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai
Abstract:
In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA
Procedia PDF Downloads 1321053 The Turkish Version of the Carer’s Assessment of Satisfaction Index (CASI-TR): Its Cultural Adaptation, Validation, and Reliability
Authors: Cemile Kütmeç Yilmaz, Güler Duru Asiret, Gulcan Bagcivan
Abstract:
The aim of this study was to evaluate the reliability and validity of the Turkish version of the Carer’s Assessment of Satisfaction Index (CASI-TR). The study was conducted between the dates of June 2016 and September 2017 at the Training and Research Hospital of Aksaray University with the caregiving family members of the inpatients with chronic diseases. For this study, the sample size was calculated as at least 10 individuals for each item (item number (30)X10=300). The study sample included 300 caregiving family members, who provided primer care for at least three months for a patient (who had at least one chronic disease and received inpatient treatment in general internal medicine and palliative care units). Data were collected by using a demographic questionnaire and CASI-TR. Descriptive statistics, and psychometric tests were used for the data analysis. Of those caregivers, 76.7% were female, 86.3% were 65 years old and below, 43.7% were primary school graduates, 87% were married, 86% were not working, 66.3% were housewives, and 60.3% defined their income status as having an income covering one’s expenses. Care recipients often had problems in terms of walking, sleep, balance, feeding and urinary incontinence. The Cronbach Alpha value calculated for the CASI-TR (30 items) was 0,949. Internal consistency coefficients calculated for subscales were: 0.922 for the subscale of ‘caregiver satisfaction related to care recipient’, 0.875 for the subscale of ‘caregiver satisfaction related to themselves’, and 0.723 for the subscale of ‘dynamics of interpersonal relations’. Factor analysis revealed that three factors accounted for 57.67% of the total variance, with an eigenvalue of >1. assessed in terms of significance, we saw that the items came together in a significant manner. The factor load of the items were between 0.311 and 0.874. These results show that the CASI-TR is a valid and reliable scale. The adoption of the translated CASI in Turkey is found reliable and valid to assessing the satisfaction of caregivers. CASI-TR can be used easily in clinics or house visits by nurses and other health professionals for assessing caregiver satisfaction from caregiving.Keywords: carer’s assessment of satisfaction index, caregiver, validity, reliability
Procedia PDF Downloads 2041052 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE
Authors: Parimalah Velo, Ahmad Zakaria
Abstract:
Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging
Procedia PDF Downloads 2711051 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise
Authors: Adkham Paiziev, Fikrat Kerimov
Abstract:
Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy
Procedia PDF Downloads 2751050 Humans’ Physical Strength Capacities on Different Handwheel Diameters and Angles
Authors: Saif K. Al-Qaisi, Jad R. Mansour, Aseel W. Sakka, Yousef Al-Abdallat
Abstract:
Handwheels are common to numerous industries, such as power generation plants, oil refineries, and chemical processing plants. The forces required to manually turn handwheels have been shown to exceed operators’ physical strengths, posing risks for injuries. Therefore, the objectives of this research were twofold: (1) to determine humans’ physical strengths on handwheels of different sizes and angles and (2) to subsequently propose recommended torque limits (RTLs) that accommodate the strengths of even the weaker segment of the population. Thirty male and thirty female participants were recruited from a university student population. Participants were asked to exert their maximum possible forces in a counter-clockwise direction on handwheels of different sizes (35 cm, 45 cm, 60 cm, and 70 cm) and angles (0°-horizontal, 45°-slanted, and 90°-vertical). The participant’s posture was controlled by adjusting the handwheel to be at the elbow level of each participant, requiring the participant to stand erect, and restricting the hand placements to be in the 10-11 o’clock position for the left hand and the 4-5 o’clock position for the right hand. A torque transducer (Futek TDF600) was used to measure the maximum torques generated by the human. Three repetitions were performed for each handwheel condition, and the average was computed. Results showed that, at all handwheel angles, as the handwheel diameter increased, the maximum torques generated also increased, while the underlying forces decreased. In controlling the handwheel diameter, the 0° handwheel was associated with the largest torques and forces, and the 45° handwheel was associated with the lowest torques and forces. Hence, a larger handwheel diameter –as large as 70 cm– in a 0° angle is favored for increasing the torque production capacities of users. Also, it was recognized that, regardless of the handwheel diameter size and angle, the torque demands in the field are much greater than humans’ torque production capabilities. As such, this research proposed RTLs for the different handwheel conditions by using the 25th percentile values of the females’ torque strengths. The proposed recommendations may serve future standard developers in defining torque limits that accommodate humans’ strengths.Keywords: handwheel angle, handwheel diameter, humans’ torque production strengths, recommended torque limits
Procedia PDF Downloads 1121049 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite
Authors: Chen Chuanzhi, Guo Yunyun
Abstract:
The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna
Procedia PDF Downloads 1581048 Using Arts in ESL Classroom
Authors: Nazia Shehzad
Abstract:
Language and art can supplement and correlate each other. Through the ages art has been a means of visual expression used to convey a wide series of incarnated ideas. Art can take the perceiver into different times and into different worlds. It can also be used to introduce different levels of vocabulary to the learners of a second language. Learning a second language for most students is a very difficult and strenuous experience. They are not only trying to accommodate to a new language but are also trying to adjust to themselves and a new environment. They are anxious about almost everything, but they are especially self-conscious about their performance in the classroom. By relocating the focus from the student to an object, everyone participates, thus waiving a certain degree of self-consciousness. The experience, a student has with art in the classroom has to be gratifying for both the student and the teacher. If the atmosphere in the classroom is too grave it will not serve any useful purpose. Art is an excellent way to teach English and encourage collaboration and interaction between students of all ages. As making art involves many different processes, it is wonderful for classification and following/giving instructions. It is also an effective way to achieve and implement language of characterization and comparison and vocabulary acquirement for the elements of design (shape, size, color, texture, tone etc.) is so much more entertaining if done in a practical and hands-on way. Expressing ideas and feelings through art is also of immeasurable value where students are at the beginning stages of English language acquisition and for many of my Saudi students it was a form of therapy. It is also a way to respect, search, examine and share the cultural traditions of different cultures, and of the students themselves. Art not only provides a field for ideas to keep aimless, meandering minds of students' busy but is also a productive tool to analyze English language in a new order. As an ESL teacher, using art is a highly compelling way to bridge the gap between student and teacher. It’s difficult to keep students concentrated, especially when they speak a different language. To get students to actually learn and explore something in your foreign language lesson, artwork is your best friend. Many teachers feel that through amalgamation of the arts into their academic lessons students are able to learn more profoundly because they use diverse ways of thinking and problem solving. Teachers observe that drawing often retains students who might otherwise be dispassionate and can help students move ahead simple recall when they are asked to make connections and come up with an exclusive interpretation through an artwork or drawing. Students use observation skills when they are drawing, and this can help to persuade students who might otherwise remain silent or need more time to process information.Keywords: amalgamation of arts, expressing ideas and feelings through arts, effective way to achieve and implement language, language and art can supplement and correlate each other
Procedia PDF Downloads 3591047 Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes
Authors: R. Hellmuth
Abstract:
The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value.Keywords: adaptability, digital factory twin, factory planning, industry 4.0
Procedia PDF Downloads 1561046 Energy Reclamation in Micro Cavitating Flow
Authors: Morteza Ghorbani, Reza Ghorbani
Abstract:
Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.Keywords: cavitation, energy, harvesting, micro scale
Procedia PDF Downloads 1911045 Enhancing Skills of Mothers of Asthmatic Children in Techniques of Drug Administration
Authors: Erna Judith Roach, Nalini Bhaskaranand
Abstract:
Background & Significance: Asthma is the most common chronic disease among children. Education is the cornerstone of management of asthma to help the affected children. In India there are about 1.5- 3.0 million asthmatic children in the age group of 5-11 years. Many parents face management dilemmas in administration of medications to their children. Mothers being primary caregivers of children are often responsible for administering medications to them. The purpose of the study was to develop an educational package on techniques of drug administration for mothers of asthmatic children and determine its effectiveness in terms of improvement in skill in drug administration. Methodology: A quasi- experimental time series pre-test post -test control group design was used. Mothers of asthmatic children attending paediatric outpatient departments of selected hospitals along with their children between 5 and 12 years were included. Sample size consisted of 40 mothers in the experimental and 40 mothers in the control groups. Block randomization was used to assign samples to both the groups. The data collection instruments used were Baseline Proforma, Clinical Proforma, Daily asthma drug intake and symptoms diary and Observation Rating Scales on technique of using a metered dose inhaler with spacer; metered dose inhaler with facemask; metered dose inhaler alone and dry powder inhaler. The educational package consisted of a video and booklet on techniques of drug administration. Data were collected at baseline, 1, 3 and 6 months. Findings: The mean post-test scores in techniques of drug administration were higher than the mean pre-test scores in the experimental group in all techniques. The Friedman test (p < 0.01), Wilcoxon Signed Rank test (p < 0.008) and Mann Whitney U (p < 0.01) showed statistically significant difference in the experimental group than the control group. There was significant decrease in the average number of symptom days (11 Vs. 4 days/ month) and hospital visits (5 to 1 per month) in the experimental group when compared to the control group. Conclusion: The educational package was found to be effective in improving the skill of mothers in drug administration in all the techniques, especially with using the metered dose inhaler with spacer.Keywords: childhood asthma, drug administration, mothers of children, inhaler
Procedia PDF Downloads 4231044 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride
Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen
Abstract:
Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougherKeywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure
Procedia PDF Downloads 2661043 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building
Authors: Zehra Aybike Kılıç, Alpin Köknel Yener
Abstract:
Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort
Procedia PDF Downloads 1761042 Free Fibular Flaps in Management of Sternal Dehiscence
Authors: H. N. Alyaseen, S. E. Alalawi, T. Cordoba, É. Delisle, C. Cordoba, A. Odobescu
Abstract:
Sternal dehiscence is defined as the persistent separation of sternal bones that are often complicated with mediastinitis. Etiologies that lead to sternal dehiscence vary, with cardiovascular and thoracic surgeries being the most common. Early diagnosis in susceptible patients is crucial to the management of such cases, as they are associated with high mortality rates. A recent meta-analysis of more than four hundred thousand patients concluded that deep sternal wound infections were the leading cause of mortality and morbidity in patients undergoing cardiac procedures. Long-term complications associated with sternal dehiscence include increased hospitalizations, cardiac infarctions, and renal and respiratory failures. Numerous osteosynthesis methods have been described in the literature. Surgical materials offer enough rigidity to support the sternum and can be flexible enough to allow physiological breathing movements of the chest; however, these materials fall short when managing patients with extensive bone loss, osteopenia, or general poor bone quality, for such cases, flaps offer a better closure system. Early utilization of flaps yields better survival rates compared to delayed closure or to patients treated with sternal rewiring and closed drainage. The utilization of pectoralis major flaps, rectus abdominus, and latissimus muscle flaps have all been described in the literature as great alternatives. Flap selection depends on a variety of factors, mainly the size of the sternal defect, infection, and the availability of local tissues. Free fibular flaps are commonly harvested flaps utilized in reconstruction around the body. In cases regarding sternal reconstruction with free fibular flaps, the literature exclusively discussed the flap applied vertically to the chest wall. We present a different technique applying the free fibular triple barrel flap oriented in a transverse manner, in parallel to the ribs. In our experience, this method could have enhanced results and improved prognosis as it contributes to the normal circumferential shape of the chest wall.Keywords: sternal dehiscence, management, free fibular flaps, novel surgical techniques
Procedia PDF Downloads 941041 Extending ACOSOG Z0011 to Encompass Mastectomy Patients: A Retrospective Review
Authors: Ruqayya Naheed Khan, Awais Amjad Malik, Awais Naeem, Amina Khan, Asad Parvaiz
Abstract:
Introduction: Axillary nodal status in breast cancer patients is a paramount prognosticator, next to primary tumor size and grade. It has been well established that patients with negative sentinel lymph node biopsy can safely avoid axillary lymph node dissection. A positive sentinel lymph node has traditionally required subsequent axillary dissection. According to ACOSOG Z11 trial, patients who underwent axillary dissection with 3 or more positive sentinel nodes or opted for observation in case of negative sentinel lymph node, did not find any difference in Overall Survival (OS) and Disease Free Survival (DFS). The Z11 trial included patients who underwent breast conserving surgery and excluded patients with mastectomies. The purpose of this study is to determine whether Z0011 can be applied to mastectomy patients as well in 1-3 positive sentinel lymph nodes and avoid unnecessary ALND. Methods: A retrospective review was conducted at Shaukat Khanam Memorial Cancer Hospital Pakistan from Jan 2015 to Dec 2017 including patients who were treated for invasive breast cancer and required upfront mastectomy. They were clinically node negative, so sentinel lymph node biopsy was performed. Patients underwent ALND with positive sentinel lymph node. A total of 156 breast cancer patients with mastectomies were reviewed. Results: 95% of the patients were female while 3% were male. Average age was 44 years. There was no difference in race, comorbidities, histology, T stage, N stage, and overall stage, use of adjuvant chemotherapy and radiation therapy. 64 patients underwent ALND for positive lymph node while 92 patients were spared of axillary dissection due to negative sentinel lymph node biopsy. Out of 64 patients, 38 patients (59%) had only 1 lymph node positive which was the sentinel node. 18 patients (28%) had 2 lymph nodes positive including the sentinel node while only 8 patients (13%) had 3 or more positive nodes. Conclusion: Keeping in mind the complications related to ALND, above results clearly show that ALND could have been avoided in 87% of patients in the setting of adjuvant radiation, possibly avoiding the morbidity associated with axillary lymphadenectomy although a prospective randomized trial needs to confirm these results.Keywords: mastectomy, sentinel lymph node biopsy, axillary lymph node dissection, breast cancer
Procedia PDF Downloads 1951040 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 3101039 Application of Heritage Clay Roof Tiles in Malaysia’s Government Buildings: Conservation Challenges
Authors: Mohd Sabere Sulaiman, Masyitah Abd Aziz, Norsiah Hassan, Jamilah Halina Abdul Halim, Mohd Saipul Asrafi Haron
Abstract:
The use of clay roof tiles was spread out through Asia and Europe, including Malaysia, since the early 17th Century. Most of the common type of clay roof tiles are used in a flat and rectangular shape, measurement, styles, and characteristics through each tradition and interest, including responsive to the climate. Various types of heritage clay roof tiles were used in Malaysia’s Government Buildings dated 1865, 1919, 1936, and so forth, which mostly were imported from India, France, and Italy. Until now, these heritage clay roof tiles are still found throughout Malaysia, including the ‘Interlocking’ clay roof tile type. This study is to investigate and overview the existence of heritage clay roof tiles used in Malaysia; the ‘interlocking’ type with ‘lip’ and ‘hooks’, through literature reviews as desktop study besides carried out a preliminary observation on various sites and interviews. From the literatures, the last production and used of the local heritage clay roof tiles in Malaysia dated in mid 1900s in Batu Arang, Selangor. The brick factory was abandoned since early 2000s. Although the modern ‘Interlocking’ type were produced to duplicate its form, pattern, and size of the original one, they still facing the problem to blend and merged, which end up dismantling the original version, or replacing one to one condition and even replaced overall with the modern materials. This is quite contradicting with the basic principles of building conservation and had become a challenge. Initial findings from the preliminary observation on site in various state in Malaysia shows some evidence that the heritage clay roof tiles are still intact and been used. Some of them might change to modern roof materials such as metal deck, probably due to easy maintenance and cheaper. Also, some are still struggling to maintain and retain its looks and authenticity of the roof while facing the increasing of material cost. Those improper alteration and changes made is due to lack of knowledge among the owner and end user. Various aspect needs to be considered in order to sustain its usage and its original looks by looking at the proper maintenance aspects of the heritage clay roof tiles to prolong the building life for future generation preferences.Keywords: challenges, clay, interlocking, maintenance
Procedia PDF Downloads 961038 Compensation of Bulk Charge Carriers in Bismuth Based Topological Insulators via Swift Heavy Ion Irradiation
Authors: Jyoti Yadav, Rini Singh, Anoop M.D, Nisha Yadav, N. Srinivasa Rao, Fouran Singh, Takayuki Ichikawa, Ankur Jain, Kamlendra Awasthi, Manoj Kumar
Abstract:
Nanocrystalline films exhibit defects and strain induced by its grain boundaries. Defects and strain affect the physical as well as topological insulating properties of the Bi2Te3 thin films by changing their electronic structure. In the present studies, the effect of Ni7+ ion irradiation on the physical and electrical properties of Bi2Te3 thin films was studied. The films were irradiated at five different fluences (5x1011, 1x1012, 3x1012, 5x1012, 1x1013 ions/cm2). Thin films synthesized using the e-beam technique possess a rhombohedral crystal structure with the R-3m space group. The average crystallite size, as determined by x-ray diffraction (XRD) peak broadening, was found to be 18.5 ± 5 (nm). It was also observed that irradiation increases the induced strain. Raman Spectra of the films demonstrate the splitting of A_1u^1 modes originating from the vibrations along the c-axis. This is by the variation in the lattice parameter ‘c,’ as observed through XRD. The atomic force microscopy study indicates the decrease in surface roughness up to the fluence of 3x1012 ions/cm2 and further increasing the fluence increases the roughness. The decrease in roughness may be due to the growth of smaller nano-crystallites on the surface of thin films due to irradiation-induced annealing. X-ray photoelectron spectroscopy studies reveal the composition to be in close agreement to the nominal values i.e. Bi2Te3. The resistivity v/s temperature measurements revealed an increase in resistivity up to the fluence 3x1012 ions/cm2 and a decrease on further increasing the fluence. The variation in electrical resistivity is corroborated with the change in the carrier concentration as studied through low-temperature Hall measurements. A crossover from the n-type to p-type carriers was achieved in the irradiated films. Interestingly, tuning of the Fermi level by compensating the bulk carriers using ion-irradiation could be achieved.Keywords: Annealing, Irradiation, Fermi level, Tuning
Procedia PDF Downloads 1381037 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 721036 Ecofriendly Approach for the Management of Red Cotton Bug Dysdercus koenigii by Botanicals
Authors: S: Kayesth, K. K. Gupta
Abstract:
The indiscriminate use of insecticides causes environmental contamination, adversely affects non-target organisms and develops resistance among insects and pests. There has always been felt a need for methods of control which can overcome these environmental and other ecological issues. The present study was designed to evaluate the effect of different plants volatiles on survival, longevity, growth, development and reproduction of Dysdercus koenigii. The hexane extract of three different plants (Catharanthus roseus, Ocimum sanctum and Lantana camara) was used. The fifth instars were exposed to hexane extract with concentrations of 10%, 5%, 2.5%, 1.25%, 0.1%, 0.5%, 0.25%, 0.13% and 0.06% while adults were treated with 10%, 5%, 2.5% and 1.25%. 1-ml of each of these concentrations was used to make a thin film in sterilized glass jars of 500 ml capacity. Fifteen newly emerged fifth instar nymphs and ten pairs of adult bugs were treated separately with the extracts for 24 hour exposure to the plant volatiles. The effect of these plant extract was observed and readings were recorded for 23 days. Survival and longevity of both fifth instars and adults were in correlation with the concentrations of the plant extracts. The extracts did not influence growth of fifth instars significantly but impaired their development significantly at higher concentrations. The treated nymphs at higher concentrations either could not moult or died and those which could moult moulted into supranumery instars, adultoids or adults with wing deformities. The supranumery insects retained the nymphal characters except increased body size and wing pads. The adultoids had wing deformities and non-functional reproductive organs. Adultoids exhibited courtship and mounting attempts but were not able to mate. At lower concentrations from 0.1 to 0.06% the fifth instars developed into adults with fewer deformities. At these concentrations, the fecundity and fertility of these adults were drastically reduced. On the contrary, the treated adults also had reduced fecundity and fertility compared to control. Among three plant extracts Ocimcum was most toxic for both fifth instars and adults in terms of survival and longevity. Catharanthus, Ocimum and Lantana appeared to have potential molecules which possessed insect juvenile hormone like activity. Potential application of these plant extracts in IPM was discussed.Keywords: Catharanthus, Ocimum, Lantana, Dysdercus koenigii
Procedia PDF Downloads 3011035 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4151034 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation
Authors: Huanru Wang, Jianzhun Jiang
Abstract:
At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts
Procedia PDF Downloads 1211033 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil
Authors: A. Y. Purnama, N. Yasufuku
Abstract:
The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil
Procedia PDF Downloads 2331032 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field
Authors: Lina Ismail Jassim, Robiah Yunus
Abstract:
To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley
Procedia PDF Downloads 3081031 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD
Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari
Abstract:
Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD
Procedia PDF Downloads 661030 Apathetic Place, Hostile Space: A Qualitative Study on the Ability of Immigration Detention in the UK to Promote the Health and Dignity of Detainees
Abstract:
Background: The UK has one of the largest immigration detention estates in Europe and is under increasing scrutiny, particularly regarding the lack of transparency over the use of detention and the conditions. Therefore, this research seeks to explore the professional perceptions of the ability of immigration detention in the UK to promote health and dignity. Methods: A phenomenological approach to qualitative methods were used, with social constructivist theorisations of health and dignity. Seven semi-structured interviews were conducted using Microsoft Teams. Participants included a range of immigration detention stakeholders who have visited closed immigration detention centres in the UK in a professional capacity. Recorded interviews were transcribed verbatim, and analysis was data-driven through inductive reflexive thematic analysis of the entire data set to account for the small sample size. This study received ethical approval from University College London Research Ethics Committee. Results: Two global themes were created through analysis: apathetic place and hostile space. Apathetic place discusses the lack of concern for detainees' daily living and healthcare needs within immigration detention in the UK. This is explored through participants' perceptions of the lack of ability of monitoring and evaluation processes to ensure detainees are able to live with dignity and understand the unfulfilled duty of care that exists in detention. Hostile space discusses immigration detention in the UK as a wider system of hostility. This is explored through the disempowering impact on detainees, the perception of a failing system as a result of inadequate safeguarding procedures, and a belief that the intention of immigration detention is misaligned with its described purpose. Conclusion: This research explains why the current immigration detention system in the UK is unable to promote health and dignity, offering a social justice and action-orientated approach to research in this sphere. The findings strengthen the discourse against the use of detention as an immigration control tool in the UK. Implications for further research include a stronger emphasis on investigating alternatives to detention and culturally considerate opportunities for patient-centred healthcare.Keywords: access to healthcare, dignity, health, immigration detention, migrant, refugee, UK
Procedia PDF Downloads 1031029 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity
Authors: Anamika Sahu
Abstract:
The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.Keywords: MASW, mechanical, petrophysical, site characterization
Procedia PDF Downloads 861028 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine
Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot
Abstract:
Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns
Procedia PDF Downloads 1521027 The Effect of 'Teachers Teaching Teachers' Professional Development Course on Teachers’ Achievement and Classroom Practices
Authors: Nuri Balta, Ali Eryilmaz
Abstract:
High-quality teachers are the key to improve student learning. Without a professional development of the teachers, the improvement of student success is difficult and incomplete. This study offers an in-service training course model for professional development of teachers (PD) entitled "teachers teaching teachers" (TTT). The basic premise of the PD program, designed for this study, was primarily aimed to increase the subject matter knowledge of high school physics teachers. The TTT course (the three hour long workshops), organized for this study, lasted for seven weeks with seventeen teachers took part in the TTT program at different amounts. In this study, the effect of the TTT program on teachers’ knowledge improvement was searched through the modern physics unit (MPU). The participating teachers taught the unit to one of their grade ten classes earlier, and they taught another equivalent class two months later. They were observed in their classes both before and after TTT program. The teachers were divided into placebo and the treatment groups. The aim of Solomon four-group design is an attempt to eliminate the possible effect of pre-test. However, in this study the similar design was used to eliminate the effect of pre teaching. The placebo group teachers taught their both classes as regular and the treatment group teachers had TTT program between the two teachings. The class observation results showed that the TTT program increased teachers’ knowledge and skills in teaching MPU. Further, participating in the TTT program caused teachers to teach the MPU in accordance with the requirements of the curriculum. In order to see any change in participating teachers’ success, an achievement test was applied to them. A large effect size (dCohen=.93) was calculated for the effect of TTT program on treatment group teachers’ achievement. The results suggest that staff developers should consider including topics, attractive to teachers, in-service training programs (a) to help teachers’ practice teaching the new topics (b) to increase the participation rate. During the conduction of the TTT courses, it was observed that teachers could not end some discussions and explain some concepts. It is now clear that teachers need support, especially when discussing counterintuitive concepts such as modern physics concepts. For this reason it is recommended that content focused PD programs be conducted at the helm of a scholarly coach.Keywords: high school physics, in-service training course, modern physics unit, teacher professional development
Procedia PDF Downloads 1971026 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition
Authors: L. Mentar, O. Baka, A. Azizi
Abstract:
Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD
Procedia PDF Downloads 2901025 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications
Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie
Abstract:
In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer
Procedia PDF Downloads 150