Search results for: masonry numerical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6980

Search results for: masonry numerical modeling

2300 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects

Authors: Tugrul Tulunay, Iyas Devran Celik

Abstract:

When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.

Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling

Procedia PDF Downloads 165
2299 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 246
2298 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 421
2297 Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption

Authors: Josiane R. Pires, Marco A. S. González, Bruna L. Brenner, Luciana S. Roos

Abstract:

The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.

Keywords: civil construction, design, thermal performance, energy, economic analysis

Procedia PDF Downloads 549
2296 Cointegration Dynamics in Asian Stock Markets: Implications for Long-Term Portfolio Management

Authors: Xinyi Xu

Abstract:

This study conducts a detailed examination of Asian stock markets over the period from 2008 to 2023, with a focus on the dynamics of cointegration and their relevance for long-term investment strategies. Specifically, we assess the co-movement and potential for pairs trading—a strategy where investors take opposing positions on two stocks, indices, or financial instruments that historically move together. For example, we explore the relationship between the Nikkei 225 (N225), Japan’s benchmark stock index, and the Straits Times Index (STI) of Singapore, as well as the relationship between the Korea Composite Stock Price Index (KS11) and the STI. The methodology includes tests for normality, stationarity, cointegration, and the application of Vector Error Correction Modeling (VECM). Our findings reveal significant long-term relationships between these pairs, indicating opportunities for pairs trading strategies. Furthermore, the research underscores the challenges posed by model instability and the influence of major global incidents, which are identified as structural breaks. These findings pave the way for further exploration into the intricacies of financial market dynamics.

Keywords: normality tests, stationarity, cointegration, VECM, pairs trading

Procedia PDF Downloads 55
2295 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices

Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu

Abstract:

The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.

Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying

Procedia PDF Downloads 130
2294 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 315
2293 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: particulate matter, emissions, fugitive, construction, air pollution

Procedia PDF Downloads 350
2292 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 272
2291 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen

Abstract:

The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 341
2290 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 134
2289 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 402
2288 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 404
2287 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 354
2286 The Concept of Neurostatistics as a Neuroscience

Authors: Igwenagu Chinelo Mercy

Abstract:

This study is on the concept of Neurostatistics in relation to neuroscience. Neuroscience also known as neurobiology is the scientific study of the nervous system. In the study of neuroscience, it has been noted that brain function and its relations to the process of acquiring knowledge and behaviour can be better explained by the use of various interrelated methods. The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. On the other hand, Neurostatistics based on this study is viewed as a statistical concept that uses similar techniques of neuron mechanisms to solve some problems especially in the field of life science. This study is imperative in this era of Artificial intelligence/Machine leaning in the sense that clear understanding of the technique and its proper application could assist in solving some medical disorder that are mainly associated with the nervous system. This will also help in layman’s understanding of the technique of the nervous system in order to overcome some of the health challenges associated with it. For this concept to be well understood, an illustrative example using a brain associated disorder was used for demonstration. Structural equation modelling was adopted in the analysis. The results clearly show the link between the techniques of statistical model and nervous system. Hence, based on this study, the appropriateness of Neurostatistics application in relation to neuroscience could be based on the understanding of the behavioural pattern of both concepts.

Keywords: brain, neurons, neuroscience, neurostatistics, structural equation modeling

Procedia PDF Downloads 69
2285 A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach

Authors: Ekta Jain, Kalpana Dahiya, Vanita Verma

Abstract:

This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory.

Keywords: assignment, imbalanced, priority, time minimization

Procedia PDF Downloads 233
2284 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization

Procedia PDF Downloads 255
2283 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 142
2282 Numerical Study on Parallel Rear-Spoiler on Super Cars

Authors: Anshul Ashu

Abstract:

Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.

Keywords: drag, lift, flow simulation, spoiler

Procedia PDF Downloads 498
2281 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 223
2280 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water

Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad

Abstract:

In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.

Keywords: adsorption, biochar, chemisorption, polluted water

Procedia PDF Downloads 147
2279 Pattern of Physical Activity and Its Impact on the Quality of Life: A Structural Equation Modelling Analysis

Authors: Ali Maksum

Abstract:

In a number of countries, including Indonesia, the tendency for non-communicable diseases is increasing. As a result, health costs must be paid by the state continues to increase as well. People's lifestyles, including due to lack of physical activity, are thought to have contributed significantly to the problem. This study aims to examine the impact of participation in sports on quality of life, which is reflected in three main indicators, namely health, psychological, and social aspects. The study was conducted in the city of Surabaya and its surroundings, with a total of 490 participants, consisting of 245 men and 245 women with an average age of 45.4 years. Data on physical activity and quality of life were collected by questionnaire and analyzed using structural equation modeling. The test results of the model prove that the value of chi-square = 8,259 with p = .409, RMSEA = .008, NFI = .992, and CFI = 1. This means that the model is compatible with the data. The model explains that physical activity has a significant effect on quality of life. People who exercise regularly are better able to cope with stress, have a lower risk of illness, and have higher pro-social behavior. Therefore, it needs serious efforts from stakeholders, especially the government, to create an ecosystem that allows the growth of movement culture in the community.

Keywords: participation, physical activity, quality of life, structural equation modelling

Procedia PDF Downloads 123
2278 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 170
2277 The Construction of the Residential Landscape in the Mountain Environment: Taking the Eling Peak, 'Mirror of the Sky', in Chongqing, China as an Example

Authors: Yuhang Zou, Zhu Wang

Abstract:

Most of the western part of China is mountainous and hilly region, with abundant resources of mountainous space. However, the resources are complex, and the ecological factors are diverse. As urbanization expands rapidly today, the landscape of the mountain residence needs to be changed. This paper, starting with the ecological environment and visual landscape of the mountain living space, analyzes the basic conditions of the Eling Peak, ‘Mirror of the Sky’, in Chongqing, China before its landscape renovation. Then, it analyzes some parts of the project, including the overall planning, ecological coordination, space expansion and local conditions in mountain environment. After that, this paper concludes the intention of designer and 4 methods, appropriate demolition, space reconstruction, landscape modeling and reasonable road system, to transform the master’s mountain residential works. Finally, through the analysis and understanding of the project, it sums up that the most beautiful landscape is not only the outdoor space, but also borrowing scene from the city and the sky, making them a part of the mountainous residential buildings. Only in this way can people, landscape, building, sky, and city become integrated and coexist harmoniously.

Keywords: landscape design, mountainous architecture, renovation, residence

Procedia PDF Downloads 156
2276 A Model for Solid Transportation Problem with Three Hierarchical Objectives under Uncertain Environment

Authors: Wajahat Ali, Shakeel Javaid

Abstract:

In this study, we have developed a mathematical programming model for a solid transportation problem with three objective functions arranged in hierarchical order. The mathematical programming models with more than one objective function to be solved in hierarchical order is termed as a multi-level programming model. Our study explores a Multi-Level Solid Transportation Problem with Uncertain Parameters (MLSTPWU). The proposed MLSTPWU model consists of three objective functions, viz. minimization of transportation cost, minimization of total transportation time, and minimization of deterioration during transportation. These three objective functions are supposed to be solved by decision-makers at three consecutive levels. Three constraint functions are added to the model, restricting the total availability, total demand, and capacity of modes of transportation. All the parameters involved in the model are assumed to be uncertain in nature. A solution method based on fuzzy logic is also discussed to obtain the compromise solution for the proposed model. Further, a simulated numerical example is discussed to establish the efficiency and applicability of the proposed model.

Keywords: solid transportation problem, multi-level programming, uncertain variable, uncertain environment

Procedia PDF Downloads 81
2275 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment

Authors: Abhishek Kumar, Nilam

Abstract:

As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.

Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability

Procedia PDF Downloads 151
2274 Assessing the Ecological Status of the Moroccan Mediterranean Sea: An Ecopath Modeling Study

Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay

Abstract:

In order to understand the structure, functioning, and current state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model was applied. The model was based on 31 functional groups, which included 21 fish species, 7 invertebrates, 2 primary producers, and one detritus group. The trophic interactions between these groups were analyzed, and the system's average trophic transfer efficiency was found to be 23%. The total primary production and total respiration were calculated to be greater than 1, indicating that the system produces more energy than it respires. The ecosystem was found to have a high level of respiration and consumption flows, and indicators of stability and development showed low values for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating that the ecosystem is disturbed and has a linear rather than web-like trophic structure. Keystone species were identified using the keystone index and mixed trophic impact analysis, with other demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups.

Keywords: ecopath, food web, trophic flux, moroccan mediterranean sea

Procedia PDF Downloads 77
2273 Synthesis, Biological Evaluation and Molecular Modeling Studies on Chiral Chloroquine Analogues as Antimalarial Agents

Authors: Srinivasarao Kondaparla, Utsab Debnath, Awakash Soni, Vasantha Rao Dola, Manish Sinha, Kumkum Kumkum Srivastava, Sunil K. Puri, Seturam B. Katti

Abstract:

In a focused exploration, we have designed synthesized and biologically evaluated chiral conjugated new chloroquine (CQ) analogs with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity [for in vitro IC₅₀= 56.98nM (3D7), 97.76nM (K1); for in vivo (up to at the dose of 12.5 mg/kg); SI = 3510] as a new lead of antimalarial agent. Other compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c are also showing moderate activity against CQ-sensitive (3D7) strain and superior activity against resistant (K1) strain of P. falciparum. Furthermore, we have carried out docking and 3D-QSAR studies of all in-house data sets (168 molecules) of chiral CQ analogs to explain the structure activity relationships (SAR). Our new findings specified the significance of H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against 3D7 strain indicated the favorable and unfavorable sites of CQ analogs for incorporating steric, hydrophobic and electropositive groups to improve the antimalarial activity.

Keywords: piperazines, CQ-sensitive strain-3D7, in-vitro and in-vivo assay, docking, 3D-QSAR

Procedia PDF Downloads 169
2272 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 355
2271 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level

Procedia PDF Downloads 363