Search results for: intelligent transport system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19101

Search results for: intelligent transport system

14421 Wind Wave Modeling Using MIKE 21 SW Spectral Model

Authors: Pouya Molana, Zeinab Alimohammadi

Abstract:

Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.

Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio

Procedia PDF Downloads 395
14420 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment

Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal

Abstract:

This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.

Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability

Procedia PDF Downloads 325
14419 Studies on the Prevalence and Determination of Associated Risk Factors of Babesia in Goats of District Toba Tek Singh, Punjab, Pakistan

Authors: Tauseef-ur-Rehman, Rao Zahid Abbas, Wasim Babar, Arbab Sikandar

Abstract:

Babesiosis is an infection due to the multiplication of tick borne parasite, Babesia sp., in erythrocytes of host (variety of vertebrates) including small ruminants and is responsible for decreased livestock output and hence economic losses. A cross-sectional study was designed in order to evaluate the prevalence of Babesia and its relation with various associated factors in district Toba Tek Singh, Central Punjab, Pakistan in 2009-2010. A total 10.84% (50/461) out of 461 examined cases for Babesia were found positive for Babesia infection. Month-wise peak prevalence was observed in July (17.95%), while no positive case was recorded in Dec-2009 and Jan-2010. The prevalence of infection in different goat breeds was found as non-significant (P < 0.05) for Babesia infection. The prevalence of Babesia was found significantly (P < 0.05) dependent to the goat age and sex. The feeding system, housing system, floor type and herd size revealed strong correlation with Babesia prevalence, while watering system and body conditions were found to be non-significant (P < 0.05), and hence it is suggested that with the improvement of management precautions Babesiosis can be avoided.

Keywords: Babesia, goat, prevalence, Pakistan, risk factors

Procedia PDF Downloads 514
14418 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 428
14417 Economic Impact of Mediation: Analyzing the Strengths and Weaknesses of Portuguese Mediation System

Authors: M. L. Mesquita, V. H. Ferreira, C. M. Cebola

Abstract:

Mediation is an increasingly important mechanism, particularly in the European context, as demonstrated, for example, by the publication by the European Union of the Directive 2008/52/EC on certain aspects of mediation in civil and mercantile matters. Developments in international trade and globalization in this new century have led to an increase of the number of litigations, often cross-border, and the courts have failed to respond adequately. From the economic point of view, competitive negotiation can generate negative external effects in social terms. Not always the solution found in court is the most efficient solution taking into account all elements of society. On the other hand, the administration of justice adds in economic terms transaction costs that can be mitigated by the application of other forms of conflict resolution, such as mediation. In this paper, the economic benefits of mediation will be analysed in the light of various studies on the functioning of justice. Several theoretical arguments will be confronted with empirical studies to demonstrate that mediation has significant positive economic effects. In the Portuguese legal system, legislative frameworks for mediation display a state committed to creating a new architecture for the administration of justice, based on the construction of a multi-faceted legal system for dispute resolution mechanisms. Understanding the way in which the system of mediation in Portugal was introduced, allows us to point out that our internal ordering is creating the legal instruments which can assist citizens in the effective protection of their rights. However, data on the use of mediation in concrete proceedings and the consequent effectiveness of mediation in settling disputes, reveal a mechanism that is still far from the ideal results that were initially sought.

Keywords: access to justice, alternative dispute resolution, mediation, litigation

Procedia PDF Downloads 161
14416 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 313
14415 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 81
14414 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 148
14413 The Global Economic System and the Third World Development

Authors: Monday Dickson

Abstract:

Shortly before the end of the second world war, allied leaders and other western powers designed an economic regime that would foster, among other things, global economic reconstruction, prosperity and overall development of countries of the world. They founded both the World Bank and the International Monetary Fund (IMF), with a general consensus that while the latter should specialize in monitoring global and national economies and acting as a lender of last resort, the former should focus on fighting poverty and promoting development. In setting the rules for world trade, the General Agreement on Trade and Tariffs (GATT) evolved into the World Trade Organisation (WTO). This paper, therefore, examines the impact of the activities of these institutions on the transformation and development aspirations of countries of the Third World. The study adopts the descriptive and analytical methods of investigation and derived relevant secondary data from books, journal articles, encyclopedia as well as reports from countries of the Third World. Findings show that rather than fostering poverty reduction and overall development as envisaged, the activities of global economy system leads to the “development of underdevelopment” of the Third World Countries. The strategic options that are available to countries of the Third World derived from the ability of the national governments to develop programmes of systematic exploration and exploitation of vital indices of relations with strategic countries to advance their development agenda.

Keywords: development, global economic system, prosperity, third world

Procedia PDF Downloads 434
14412 Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic

Authors: G. Hubert, S. Aubry

Abstract:

The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels.

Keywords: cosmic ray, human dose, solar flare, aviation

Procedia PDF Downloads 204
14411 Hydraulic Performance of Urban Drainage System Using SWMM: A Case Study of Siti Khadijah Retention Pond in Palembang City

Authors: Muhammad B. Al Amin, Nyimas S. Rika, Dwi F. Yanto, Marcelina

Abstract:

Siti Khadijah retention pond is located beside of Siti Khadijah Islamic Hospital on Demang Lebar Daun Street in Palembang City. This retention pond is functioned as storage for runoff from drainage channels in the surrounding area before entering Sekanak River, which is one of Musi River tributaries. However, in recent years, the developments in the surrounding area into paved area trigger to increase runoff discharge that causes the pond can no longer store it adequately. This study aimed to investigate the hydraulic performance of drainage system in the area around Siti Khadijah retention pond. A SWMM model was used to simulate runoff discharge into the pond and out from the pond, so the water level fluctuation within the pond and its capacity could be determined. Besides that, the water depth within drainage channels was simulated as well. The results showed that capacity of retention pond and some drainage channels already inadequate, so the area around it potentially to be flooded. Thus, it is necessary to increase the capacity of the retention pond and drainage channels.

Keywords: flood, retention pond, SWMM, urban drainage system

Procedia PDF Downloads 442
14410 Research on the Evaluation and Delineation of Value Units of New Industrial Parks Based on Implementation-Orientation

Authors: Chengfang Wang, Zichao Wu, Jianying Zhou

Abstract:

At present, much attention is paid to the development of new industrial parks in the era of inventory planning. Generally speaking, there are two types of development models: incremental development models and stock development models. The former relies on key projects to build a value innovation park, and the latter relies on the iterative update of the park to build a value innovation park. Take the Baiyun Western Digital Park as an example, considering the growth model of value units, determine the evaluation target. Based on a GIS platform, comprehensive land-use status, regulatory detailed planning, land use planning, blue-green ecological base, rail transit system, road network system, industrial park distribution, public service facilities, and other factors are used to carry out the land use within the planning multi-factor superimposed comprehensive evaluation, constructing a value unit evaluation system, and delineating value units based on implementation orientation and combining two different development models. The research hopes to provide a reference for the planning and construction of new domestic industrial parks.

Keywords: value units, GIS, multi-factor evaluation, implementation orientation

Procedia PDF Downloads 184
14409 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium

Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin

Abstract:

In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.

Keywords: braced tube, diagrid, framed tube, hexagrid

Procedia PDF Downloads 284
14408 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector

Authors: Mayesha Tahsin, A.S. Mollah

Abstract:

Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.

Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient

Procedia PDF Downloads 151
14407 Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load

Authors: Idowu Ibikunle Albert, Atilade Adesanya Oluwafemi, Okedeyi Abiodun Sikiru, Mustapha Rilwan Adewale

Abstract:

These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force.

Keywords: elastic beam, moving load, response of structure, variable elastic foundation

Procedia PDF Downloads 117
14406 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 105
14405 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 150
14404 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 158
14403 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel

Authors: Shuo Huang, Huomiao Guo, Wenrui Huang

Abstract:

In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.

Keywords: density flow, estuarine, navigation channel, structure

Procedia PDF Downloads 252
14402 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 422
14401 Retrospective Study of Positive Blood Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: M. Gerasimou, S. Mantzoukis, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Microbial infection of the blood is a serious condition where bacteria invade the bloodstream and cause systemic disease. In such cases, blood cultures are performed. Blood cultures are a key diagnostic test for intensive care unit (ICU) patients. Material and method: The BacT/Alert system, which measures the production of carbon dioxide with metabolic organisms, is used. The positive result in the BacT/Alert system is followed by culture in the following selective media: Blood, Mac Conkey No 2, Chocolate, Mueller Hinton, Chapman and Sabaureaud agar. Gram staining method was used to differentiate bacterial species. The microorganisms were identified by biochemical techniques in the automated Microscan (Siemens) system and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer-based test. Results: In 2017 the Laboratory of Microbiology received 3347 blood cultures. Of these, 170 came from the ICU. 116 found positive. Of these S. epidermidis was identified in 42, A. baumannii in 27, K. pneumoniae in 12 (4 of these KPC ‘Klebsiella pneumoniae carbapenemase’), S. hominis in 8, E. faecium in 7, E. faecalis in 5, P. aeruginosa in 3, C. albicans in 3, S. capitis in 2, K. oxytoca in 2, P. mirabilis in 2, E. coli in 1, S. intermidius in 1 and S. lugdunensis in 1. Conclusions: The study of epidemiological data and microbial resistance phenotypes is essential for the choice of therapeutic regimen for the early treatment and limitation of multivalent strains, while it is a crucial factor to solve diagnostic problems.

Keywords: blood culture, bloodstream, infection, intensive care unit

Procedia PDF Downloads 147
14400 Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) Architecture and Design

Authors: Ahmed Alqaoud

Abstract:

This paper describes Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) architecture and its components that collectively provide interoperability between heterogeneous scientific workflow systems. Requirements to achieve interoperability are identified. This paper also provides a detailed investigation and design of models and solutions for system requirements, and considers how workflow interoperability models provided by Workflow Management Coalition (WfMC) can be achieved using the PS-SWIF system.

Keywords: publish/subscribe, scientific workflow, web services, workflow interoperability

Procedia PDF Downloads 302
14399 AgriInnoConnect Pro System Using Iot and Firebase Console

Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla

Abstract:

AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.

Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console

Procedia PDF Downloads 37
14398 Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015

Authors: Seyyed Hossein Alavi, Soudabeh Mehri Talarposhti

Abstract:

Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue.

Keywords: tall building, green architecture, skeleton extension, Babolsar city

Procedia PDF Downloads 425
14397 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: opinion formation, Deffuant model, opinion mutation, consensus making

Procedia PDF Downloads 171
14396 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: bed topography, FBM, LBM, shallow water, simulations

Procedia PDF Downloads 94
14395 Polarization of Glass with Positive and Negative Charge Carriers

Authors: Valentina V. Zhurikhina, Mihail I. Petrov, Alexandra A. Rtischeva, Mark Dussauze, Thierry Cardinal, Andrey A. Lipovskii

Abstract:

Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy.

Keywords: glass poling, charge transport, modeling, concentration profiles

Procedia PDF Downloads 357
14394 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 301
14393 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 36
14392 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes

Authors: Ivanka Valova

Abstract:

This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.

Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation

Procedia PDF Downloads 83