Search results for: fault detection and classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5549

Search results for: fault detection and classification

869 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 81
868 Synthesis of Human Factors Theories and Industry 4.0

Authors: Andrew Couch, Nicholas Loyd, Nathan Tenhundfeld

Abstract:

The rapid emergence of technology observably induces disruptive effects that carry implications for internal organizational dynamics as well as external market opportunities, strategic pressures, and threats. An examination of the historical tendencies of technology innovation shows that the body of managerial knowledge for addressing such disruption is underdeveloped. Fundamentally speaking, the impacts of innovation are unique and situationally oriented. Hence, the appropriate managerial response becomes a complex function that depends on the nature of the emerging technology, the posturing of internal organizational dynamics, the rate of technological growth, and much more. This research considers a particular case of mismanagement, the BP Texas City Refinery explosion of 2005, that carries notable discrepancies on the basis of human factors principles. Moreover, this research considers the modern technological climate (shaped by Industry 4.0 technologies) and seeks to arrive at an appropriate conceptual lens by which human factors principles and Industry 4.0 may be favorably integrated. In this manner, the careful examination of these phenomena helps to better support the sustainment of human factors principles despite the disruptive impacts that are imparted by technological innovation. In essence, human factors considerations are assessed through the application of principles that stem from usability engineering, the Swiss Cheese Model of accident causation, human-automation interaction, signal detection theory, alarm design, and other factors. Notably, this stream of research supports a broader framework in seeking to guide organizations amid the uncertainties of Industry 4.0 to capture higher levels of adoption, implementation, and transparency.

Keywords: Industry 4.0, human factors engineering, management, case study

Procedia PDF Downloads 57
867 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors

Authors: Carlos H. Cuadra, Nobuhiro Shimoi

Abstract:

Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.

Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages

Procedia PDF Downloads 117
866 Role of Vision Centers in Eliminating Avoidable Blindness Caused Due to Uncorrected Refractive Error in Rural South India

Authors: Ranitha Guna Selvi D, Ramakrishnan R, Mohideen Abdul Kader

Abstract:

Purpose: To study the role of Vision centers in managing preventable blindness through refractive error correction in Rural South India. Methods: A retrospective analysis of patients attending 15 Vision centers in Rural South India from a period of January 2021 to December 2021 was done. Medical records of 10,85,81 patients both new and reviewed, 79,562 newly registered patients and 29,019 review patient’s from15 Vision centers were included for data analysis. All the patients registered at the vision center underwent basic eye examination, including visual acuity, IOP measurement, Slit-lamp examination, retinoscopy, Fundus examination etc. Results: A total of 1,08,581 patients were included in the study. Of the total 1,08,581 patients, 79,562 were newly registered patients at Vision center and 29,019 were review patients. Males were 52,201(48.1%) and Females were 56,308(51.9) among them. The mean age of all examined patients was 41.03 ± 20.9 years (Standard deviation) and ranged from 01 – 113 years. Presenting mean visual acuity was 0.31 ± 0.5 in the right eye and 0.31 ± 0.4 in the left eye. Of the 1,08,581 patients 22,770 patients had refractive error in right eye and 22,721 patients had uncorrected refractive error in left eye. Glass prescription was given to 17,178 (15.8%) patients. 8,109 (7.5%) patients were referred to the base hospital for specialty clinic expert opinion or for cataract surgery. Conclusion: Vision center utilizing teleconsultation for comprehensive eye screening unit is a very effective tool in reducing the avoidable visual impairment caused due to uncorrected refractive error. Vision Centre model is believed to be efficient as it facilitates early detection and management of uncorrected refractive errors.

Keywords: refractive error, uncorrected refractive error, vision center, vision technician, teleconsultation

Procedia PDF Downloads 131
865 Stereo Motion Tracking

Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox

Procedia PDF Downloads 321
864 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 148
863 The Effect of Proprioceptive Neuromuscular Facilitation and Lumbar Stabilization Exercises on Muscle Strength and Muscle Endurance in Patients with Lumbar Disc Hernia

Authors: Mustafa Gulsen, Mitat Koz

Abstract:

The aim of this study is to investigate the effect of lumbar stabilisation and proprioceptive neuromuscular facilitation (PNF) training on muscle strength and muscle endurance. The participants were 64 between the ages of 15-69 (53.04 ± 14.59), who were graded protrusion and bulging lumbar herniation according to 'Macnab Classification'. The participants were divided into four groups as each group had 16 participants: lumbar stabilitation training, PNF training, physical therapy and control groups. Sociodemographic features were recorded. Then their muscle strength tests (by isokinetic dynamometer (Cybex 770 Norm Lumex Inc, Ronkonkoma, NY, USA) were recorded. Before and after applications; visual analogue scale (VAS), Oswestry Disability İndex were applied by a physical therapist. The participants in lumbar stabilisation group performed 45 minutes, 5 days in a week for 4 weeks strength training with a physical therapist observation. The participants in PNF group performed 5 days in a week for 4 weeks with pelvic patterns of PNF by a physiotherapist. The participants in physical therapy group underwent Hotpack, Tens and Ultrasound therapy 5 days in a week for 4 weeks. The participants in control group didn’t take any training programme. After 4 weeks, the evaluations were repeated. There were significant increases in muscle strength and muscle endurance in lumbar stabilization training group. Also in pain intensity at rest and during activity in this group and in Oswestry disability index of patients, there were significant improvements (p < 0.05). In PNF training group likewise, there were significant improvements in muscle strength, muscle endurance, pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). But improvements in the Lumbar Stabilization group was better than PNF Group. We found significant differences only in pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). in the patients in Physical Therapy group. We think that appropriate physiotherapy and rehabilitation program which will be prepared for patients, to protect the waist circumference of patients with low muscle strength and low muscle endurance will increase muscle strength and muscle endurance. And it is expected that will reduce pain and will provide advances toward correcting functional disability of the patients.

Keywords: disc herniation, endurance, lumbar stabilitation exercises, PNF, strength

Procedia PDF Downloads 275
862 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century

Authors: Stephen L. Roberts

Abstract:

This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.

Keywords: algorithms, global health, pandemic, surveillance

Procedia PDF Downloads 173
861 Identification and Classification of Entrepreneurial Opportunities in Blinds’ Tourism Industry in Khuzestan Province of Iran

Authors: Ali Kharazi, Hassanali Aghajani, Hesami Azizi

Abstract:

Tourism entrepreneurship is a growing field that has the potential to create new opportunities for sustainable development. The purpose of this study is to identify and classify the entrepreneurial opportunities in the blind tourism industry in Khuzestan Province of Iran that can be created through the operation of blinds’ tours. This study used a mixed methods approach. The qualitative data was collected through semi-structured interviews with 15 tourist guides and tourism activists, while the quantitative data was collected through a questionnaire survey of 40 blind people who had participated in blinds’ tours. The findings of this study suggest that there are a number of entrepreneurial opportunities in the blind tourism industry in Khuzestan Province, including (1) developing and providing accessible tourism services, such as tours, accommodations, restaurants, and transportation, (2) creating and marketing blind-friendly tourism products and experiences (3) training and educating tourism professionals on how to provide accessible and inclusive tourism services. This study contributes to the theoretical understanding of tourism entrepreneurship by providing insights into the entrepreneurial opportunities in the blind tourism industry. The findings of this study can be used to develop policies and programs that support the development of the blind tourism industry. The qualitative data were analyzed using content analysis. The quantitative data were analyzed using descriptive statistics and inferential statistics. This study examines the entrepreneurial opportunities within the blind tourism industry in Khuzestan Province, Iran. In addition, Khuzestan province has made relatively good development in the field of blinds’ tourism. Blind tourists have become loyal customers of blinds’ tours, which has increased their self-confidence and social participation. Tourist guides and centers of tourism services are interested in participating in blinds’ tours more than before, and even other parts outside the tourism field have encouraged sponsorship. Education had a great impact on the quality of tourism services, especially for the blind. It has played a significant role in improving the quality of tourism services for the blind. However, the quality and quantity of infrastructure should be increased in different sectors of tourism services to foster future growth. These opportunities can be used to create new businesses and jobs and to promote sustainable development in the region.

Keywords: entrepreneurship, tourism, blind, sustainable development, Khuzestan

Procedia PDF Downloads 57
860 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data

Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan

Abstract:

Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.

Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy

Procedia PDF Downloads 165
859 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 84
858 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 382
857 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 33
856 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products

Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin

Abstract:

Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.

Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins

Procedia PDF Downloads 110
855 Chemometric-Based Voltammetric Method for Analysis of Vitamins and Heavy Metals in Honey Samples

Authors: Marwa A. A. Ragab, Amira F. El-Yazbi, Amr El-Hawiet

Abstract:

The analysis of heavy metals in honey samples is crucial. When found in honey, they denote environmental pollution. Some of these heavy metals as lead either present at low or high concentrations are considered to be toxic. Other heavy metals, for example, copper and zinc, if present at low concentrations, they considered safe even vital minerals. On the contrary, if they present at high concentrations, they are toxic. Their voltammetric determination in honey represents a challenge due to the presence of other electro-active components as vitamins, which may overlap with the peaks of the metal, hindering their accurate and precise determination. The simultaneous analysis of some vitamins: nicotinic acid (B3) and riboflavin (B2), and heavy metals: lead, cadmium, and zinc, in honey samples, was addressed. The analysis was done in 0.1 M Potassium Chloride (KCl) using a hanging mercury drop electrode (HMDE), followed by chemometric manipulation of the voltammetric data using the derivative method. Then the derivative data were convoluted using discrete Fourier functions. The proposed method allowed the simultaneous analysis of vitamins and metals though their varied responses and sensitivities. Although their peaks were overlapped, the proposed chemometric method allowed their accurate and precise analysis. After the chemometric treatment of the data, metals were successfully quantified at low levels in the presence of vitamins (1: 2000). The heavy metals limit of detection (LOD) values after the chemometric treatment of data decreased by more than 60% than those obtained from the direct voltammetric method. The method applicability was tested by analyzing the selected metals and vitamins in real honey samples obtained from different botanical origins.

Keywords: chemometrics, overlapped voltammetric peaks, derivative and convoluted derivative methods, metals and vitamins

Procedia PDF Downloads 138
854 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time

Procedia PDF Downloads 356
853 HIV Incidence among Men Who Have Sex with Men Measured by Pooling Polymerase Chain Reaction, and Its Comparison with HIV Incidence Estimated by BED-Capture Enzyme-Linked Immunosorbent Assay and Observed in a Prospective Cohort

Authors: Mei Han, Jinkou Zhao, Yuan Yao, Liangui Feng, Xianbin Ding, Guohui Wu, Chao Zhou, Lin Ouyang, Rongrong Lu, Bo Zhang

Abstract:

To compare the HIV incidence estimated using BED capture enzyme linked immunosorbent assay (BED-CEIA) and observed in a cohort against the HIV incidence among men who have sex with men (MSM) measured by pooling polymerase chain reaction (pooling-PCR). A total of 617 MSM subjects were included in a respondent driven sampling survey in Chongqing in 2008. Among the 129 that were tested HIV antibody positive, 102 were defined with long-term infection, 27 were assessed for recent HIV infection (RHI) using BED-CEIA. The remaining 488 HIV negative subjects were enrolled to the prospective cohort and followed-up every 6 months to monitor HIV seroconversion. All of the 488 HIV negative specimens were assessed for acute HIV infection (AHI) using pooling-PCR. Among the 488 negative subjects in the open cohort, 214 (43.9%) were followed-up for six months, with 107 person-years of observation and 14 subjects seroconverted. The observed HIV incidence was 12.5 per 100 person-years (95% CI=9.1-15.7). Among the 488 HIV negative specimens, 5 were identified with acute HIV infection using pooling-PCR at an annual rate of 14.02% (95% CI=1.73-26.30). The estimated HIV-1 incidence was 12.02% (95% CI=7.49-16.56) based on BED-CEIA. The HIV incidence estimated with three different approaches was different among subgroups. In the highly HIV prevalent MSM, it costs US$ 1724 to detect one AHI case, while detection of one case of RHI with BED assay costs only US$ 42. Three approaches generated comparable and high HIV incidences, pooling PCR and prospective cohort are more close to the true level of incidence, while BED-CEIA seemed to be the most convenient and economical approach for at-risk population’s HIV incidence evaluation at the beginning of HIV pandemic. HIV-1 incidences were alarmingly high among MSM population in Chongqing, particularly within the subgroup under 25 years of age and those migrants aged between 25 to 34 years.

Keywords: BED-CEIA, HIV, incidence, pooled PCR, prospective cohort

Procedia PDF Downloads 404
852 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 125
851 Using Arts in ESL Classroom

Authors: Nazia Shehzad

Abstract:

Language and art can supplement and correlate each other. Through the ages art has been a means of visual expression used to convey a wide series of incarnated ideas. Art can take the perceiver into different times and into different worlds. It can also be used to introduce different levels of vocabulary to the learners of a second language. Learning a second language for most students is a very difficult and strenuous experience. They are not only trying to accommodate to a new language but are also trying to adjust to themselves and a new environment. They are anxious about almost everything, but they are especially self-conscious about their performance in the classroom. By relocating the focus from the student to an object, everyone participates, thus waiving a certain degree of self-consciousness. The experience, a student has with art in the classroom has to be gratifying for both the student and the teacher. If the atmosphere in the classroom is too grave it will not serve any useful purpose. Art is an excellent way to teach English and encourage collaboration and interaction between students of all ages. As making art involves many different processes, it is wonderful for classification and following/giving instructions. It is also an effective way to achieve and implement language of characterization and comparison and vocabulary acquirement for the elements of design (shape, size, color, texture, tone etc.) is so much more entertaining if done in a practical and hands-on way. Expressing ideas and feelings through art is also of immeasurable value where students are at the beginning stages of English language acquisition and for many of my Saudi students it was a form of therapy. It is also a way to respect, search, examine and share the cultural traditions of different cultures, and of the students themselves. Art not only provides a field for ideas to keep aimless, meandering minds of students' busy but is also a productive tool to analyze English language in a new order. As an ESL teacher, using art is a highly compelling way to bridge the gap between student and teacher. It’s difficult to keep students concentrated, especially when they speak a different language. To get students to actually learn and explore something in your foreign language lesson, artwork is your best friend. Many teachers feel that through amalgamation of the arts into their academic lessons students are able to learn more profoundly because they use diverse ways of thinking and problem solving. Teachers observe that drawing often retains students who might otherwise be dispassionate and can help students move ahead simple recall when they are asked to make connections and come up with an exclusive interpretation through an artwork or drawing. Students use observation skills when they are drawing, and this can help to persuade students who might otherwise remain silent or need more time to process information.

Keywords: amalgamation of arts, expressing ideas and feelings through arts, effective way to achieve and implement language, language and art can supplement and correlate each other

Procedia PDF Downloads 353
850 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 351
849 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm

Authors: Belgherbi Aicha, Bessaid Abdelhafid

Abstract:

In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 315
848 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 374
847 Fatal Attractions: Exploiting Olfactory Communication between Invasive Predators for Conservation

Authors: Patrick M. Garvey, Roger P. Pech, Daniel M. Tompkins

Abstract:

Competition is a widespread interaction and natural selection will encourage the development of mechanisms that recognise and respond to dominant competitors, if this information reduces the risk of a confrontation. As olfaction is the primary sense for most mammals, our research tested whether olfactory ‘eavesdropping’ mediates alien species interactions and whether we could exploit our understanding of this behaviour to create ‘super-lures’. We used a combination of pen and field experiments to evaluate the importance of this behaviour. In pen trials, stoats (Mustela erminea) were exposed to the body odour of three dominant predators (cat / ferret / African wild dog) and these scents were found to be attractive. A subsequent field trial tested whether attraction displayed towards predator odour, particularly ferret (Mustela furo) pheromones, could be replicated with invasive predators in the wild. We found that ferret odour significantly improved detection and activity of stoats and hedgehogs (Erinaceus europaeus), while also improving detections of ship rats (Rattus rattus). Our current research aims to identify the key components of ferret odour, using chemical analysis and behavioural experiments, so that we can produce ‘scent from a can’. A lure based on a competitors’ odour would be beneficial in many circumstances including: (i) where individuals display variability in attraction to food lures, (ii) there are plentiful food resources available, (iii) new immigrants arrive into an area, (iv) long-life lures are required. Pest management can therefore benefit by exploiting behavioural responses to odours to achieve conservation goals.

Keywords: predator interactions, invasive species, eavesdropping, semiochemicals

Procedia PDF Downloads 397
846 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles

Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu

Abstract:

The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.

Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation

Procedia PDF Downloads 299
845 Body Farming in India and Asia

Authors: Yogesh Kumar, Adarsh Kumar

Abstract:

A body farm is a research facility where research is done on forensic investigation and medico-legal disciplines like forensic entomology, forensic pathology, forensic anthropology, forensic archaeology, and related areas of forensic veterinary. All the research is done to collect data on the rate of decomposition (animal and human) and forensically important insects to assist in crime detection. The data collected is used by forensic pathologists, forensic experts, and other experts for the investigation of crime cases and further research. The research work includes different conditions of a dead body like fresh, bloating, decay, dry, and skeleton, and data on local insects which depends on the climatic conditions of the local areas of that country. Therefore, it is the need of time to collect appropriate data in managed conditions with a proper set-up in every country. Hence, it is the duty of the scientific community of every country to establish/propose such facilities for justice and social management. The body farms are also used for training of police, military, investigative dogs, and other agencies. At present, only four countries viz. U.S., Australia, Canada, and Netherlands have body farms and related facilities in organised manner. There is no body farm in Asia also. In India, we have been trying to establish a body farm in A&N Islands that is near Singapore, Malaysia, and some other Asian countries. In view of the above, it becomes imperative to discuss the matter with Asian countries to collect the data on decomposition in a proper manner by establishing a body farm. We can also share the data, knowledge, and expertise to collaborate with one another to make such facilities better and have good scientific relations to promote science and explore ways of investigation at the world level.

Keywords: body farm, rate of decomposition, forensically important flies, time since death

Procedia PDF Downloads 74
844 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 27
843 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides

Authors: Chia-Ting Chang, Chia-Yu Lin

Abstract:

We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.

Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance

Procedia PDF Downloads 410
842 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 108
841 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 129
840 Development and Pre-clinical Evaluation of New ⁶⁴Cu-NOTA-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors

Authors: Norah Al Hokbany, Ibrahim Al Jammaz, Basem Al Otaibi, Yousif Al Malki, Subhani M. Okarvi

Abstract:

Objective: The folate receptor is over-expressed in a wide variety of human tumors. Conjugates of folate have been shown to be selectively taken up by tumor cells via the folate receptor. In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers. Methods: we synthesized ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugates using a straightforward and simple one-step reaction. Radiochemical yields were greater than 95% (decay-corrected) with a total synthesis time of less than 20 min. Results: Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for ⁶⁴Cu-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radio conjugates were associated with cell fractions. Bio-distribution studies in nude mice bearing human KB xenografts demonstrated a significant tumor uptake and favorable bio-distribution profile for ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugate. The uptake in the tumors was blocked by the excess injection of folic acid, suggesting a receptor-mediated process. Conclusion: These results demonstrate that the ⁶⁴Cu-NOTAM-folate conjugate may be useful as a molecular probe for the detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment.

Keywords: folate, receptor, tumor imaging, ⁶⁴Cu-NOTA-folate, PET

Procedia PDF Downloads 99