Search results for: Random Fixed Point Theorem
3549 The FINDRISC Score for Prediabetes and Diabetes Screening in Adult Libyan Males
Authors: Issam M Hajjaji, Adel Tajoury, Salah R Benhamid
Abstract:
The MENA region has the highest prevalence of diabetes in the world. Various risk scores were developed, not all appropriate locally. The objective of this study is to apply the FINDRISC Score to adult Libyan males to determine its significance, sensitivity, specificity and Positive Predictive Values as an initial screening tool for type 2 diabetes, and suggest a cut-off point. Methods: 600 subjects answered the questionnaire at their place of work, and their waist, weight, height & BP were measured. Thereafter, after excluding those with known diabetes, an Oral Glucose Tolerance Test was done. Results: 414 subjects aged 19-78 completed the questionnaire and tests. 35 (8.4%) had impaired glucose tolerance (IGT) and 13 (3.1%) had diabetes (DM). The AUC-ROC for IGT was 0.614 (95% CI: 0.527-0.701), for DM 0.810 (95% CI: 0.709-0.911) and for both 0.689 (95% CI: 0.609-0.769). The Positive Predictive Value for a cut-off score of 5 were 15.5%, 11.7% & 5.7% for both conditions combined, prediabetes & diabetes respectively. The equivalent values for a cut-off score of 8 were 16.1%, 9.0% & 7.7%. The Negative Predictive Values were uniformly above 90%. Conclusions & Recommendations: The FINDRISC Score had a low predictive value for dysglycaemia in this sample and performed at a level of significance for IGT that is similar to other MENA countries, but did better for DM. A larger sample that included women is suggested, with a view of adjusting the Score to suit the local population.Keywords: diabetes, FINDRISK, Libya, prediabetes
Procedia PDF Downloads 1273548 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization
Authors: Avantika Vats, Kushal Thakur
Abstract:
This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation
Procedia PDF Downloads 733547 Role of Financial Institutions in Promoting Micro Service Enterprises with Special Reference to Hairdressing Salons
Authors: Gururaj Bhajantri
Abstract:
Financial sector is the backbone of any economy and it plays a crucial role in the mobilisation and allocation of resources. One of the main objectives of financial sector is inclusive growth. The constituents of the financial sector are banks, and financial Institutions, which mobilise the resources from the surplus sector and channelize the same to the different needful sectors in the economy. Micro Small and the Medium Enterprises sector in India cover a wide range of economic activities. These enterprises are divided on the basis of investment on equipment. The micro enterprises are divided into manufacturing and services sector. Micro Service enterprises have investment limit up to ten lakhs on equipment. Hairdresser is one who not only cuts and shaves but also provides different types of hair cut, hairstyles, trimming, hair-dye, massage, manicure, pedicure, nail services, colouring, facial, makeup application, waxing, tanning and other beauty treatments etc., hairdressing salons provide these services with the help of equipment. They need investment on equipment not more than ten lakhs. Hence, they can be considered as Micro service enterprises. Hairdressing salons require more than Rs 2.50,000 to start a moderate salon. Moreover, hairdressers are unable to access the organised finance. Still these individuals access finance from money lenders with high rate of interest to lead life. The socio economic conditions of hairdressers are not known properly. Hence, the present study brings a light on the role of financial institutions in promoting hairdressing salons. The study also focuses the socio-economic background of individuals in hairdressings salons, problems faced by them. The present study is based on primary and secondary data. Primary data collected among hairdressing salons in Davangere city. Samples selected with the help of simple random sampling techniques. Collected data analysed and interpreted with the help of simple statistical tools.Keywords: micro service enterprises, financial institutions, hairdressing salons, financial sector
Procedia PDF Downloads 2053546 Impression Evaluation by Design Change of Anthropomorphic Agent
Authors: Kazuko Sakamoto
Abstract:
Anthropomorphic agents have been successful in areas where there are many human interactions, such as education and medical care. The persuasive effect is also expected in e-shopping sites on the web. This indicates that customer service is not necessarily human but can play that role. However, the 'humanity' in anthropomorphism sometimes has a risk of working negatively. In general, as the appearance of anthropomorphic agents approaches humans, it is thought that their affinity with humans increases. However, when the degree of similarity reaches a certain level, it gives the user a weird feeling. This is the 'eerie valley' phenomenon. This is a concept used in the world of robotics, but it seems to be applicable to anthropomorphic agents such as characters. Then what kind of design can you accept as an anthropomorphic agent that gives you a feeling of friendliness or good feeling without causing discomfort or fear to people? This study focused on this point and examined what design and characteristics would be effective for marketing communication. As a result of the investigation, it was found that there is no need for gaze and blinking, the size of the eyes is normal or large, and the impression evaluation is higher when the structure is as simple as possible. Conversely, agents with high eye-gaze and white-eye ratios had low evaluations, and the negative impact on eye-gaze was particularly large.Keywords: anthropomorphicgents, design evaluation, marketing communication, customer service
Procedia PDF Downloads 1133545 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 553544 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber
Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar
Abstract:
There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level
Procedia PDF Downloads 3323543 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 1063542 The Flood Disaster Management of Communities in Ubon Ratchathani Province, Thailand
Authors: Eakarat Boonreang, Anothai Harasarn
Abstract:
The objectives of this study are to investigate the flood disaster management capacity of communities in Ubon Ratchathani province, Thailand, and to recommend the sustainable flood management approaches of communities in Ubon Ratchathani province, Thailand. The selected population consisted of the community leaders and committees, the executives of local administrative organizations, and the head of Ubon Ratchathani provincial office of disaster prevention and mitigation. The data was collected by in-depth interview, focus group, and observation. The data was analyzed and classified in order to determine the communities’ capacity in flood disaster management. The results revealed that communities’ capacity were as follows, before flood disaster, the community leaders held a meeting with the community committees in order to plan disaster response and determined evacuation routes, and the villagers moved their belongings to higher places and prepared vehicles for evacuation. During flood disaster, the communities arranged motorboats for transportation and villagers evacuated to a temporary evacuation center. Moreover, the communities asked for survival bags, motorboats, emergency toilets, and drinking water from the local administrative organizations and the 22nd Military Circle. After flood disaster, the villagers cleaned and fixed their houses and also collaborated in cleaning the temple, school, and other places in the community. The recommendation approaches for sustainable flood disaster management consisted of structural measures, such as the establishment of reservoirs and building higher houses, and non-structural measures such as raising awareness and fostering self-reliance, establishing disaster management plans, rehearsal of disaster response procedures every year, and transferring disaster knowledge among younger generations. Moreover, local administrative organizations should formulate strategic plans that focus on disaster management capacity building at the community level, particularly regarding non-structural measures. Ubon Ratchathani provincial offices of disaster prevention and mitigation should continually monitor and evaluate the outcomes of community based disaster risk management program, including allocating more flood disaster management-related resources among local administrative organizations and communities.Keywords: capacity building, community based disaster risk management, flood disaster management, Thailand
Procedia PDF Downloads 1673541 An Exploratory Study into the Suggestive Impact of Alaa Al-Aswany's Political Essays
Authors: Valerii Dudin
Abstract:
With the continuous increase in quantity and importance of the information surrounding our daily lives, it has become crucial to understand what makes information stand out and affect our point of view, regardless of the accuracy of the facts involved. Alaa Al-Aswany’s numerous works have been an inspiration for millions of his readers in Egypt and all across the Arab World. While highly factual, the author’s political essays are both lexically and stylistically rich; they also implement descriptive allusions and proverbs to support the presented opinions. We have undertaken an effort to explore the impact on the individual perception through these political works of the author. In this study, we have overviewed previously made research on similar subjects and through contextual, intertextual, linguistic and corpus analyses we have come to realize the presence of suggestive themes in these works, capable of shaping the reader’s perception regarding a certain topic, specifically targeting the reader’s emotional bias. The findings presented in the study will reveal an overview of such examples of suggestive elements used in the author’s works, as well as various new insights on what can be considered suggestive in the context of modern Arabic printed press.Keywords: Alaa al-Aswany, cognitive linguistics, political essays, suggestion
Procedia PDF Downloads 1573540 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes
Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren
Abstract:
Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.Keywords: amino acid, genetic diversity, genes, nucleotide
Procedia PDF Downloads 4903539 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions
Authors: Cecilia Espindola, Juan Carlos Palacios
Abstract:
Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy
Procedia PDF Downloads 1203538 Design of Advanced Materials for Alternative Cooling Devices
Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera
Abstract:
More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration
Procedia PDF Downloads 2153537 A Political Analytical Evaluation of Religion Influence on Indian Politics
Authors: Mangesh Govindrao Acharya
Abstract:
The influence of religion on politics in India can be seen in the British period. The British used partition politics to create a schism between Hindus and Muslims in India. India was partitioned in1947 due to this policy of the British. In independent India, the principle of secularism was prioritized as a solution to this in the constitution created by the people. Secularism was provided for in 1978 by the 42nd Constitutional Amendment. Although India has embraced secularism, the role of religion in politics has not ended. Although 75 years of India's independence have been completed, politics is still done in the name of religion in India. Political parties choose their candidates, keeping in mind the influence of religion in a particular constituency. People think more about religion and caste while choosing their candidates. Caste riots occur due to the influence of religion-influenced politics. There is a new dispute between the minority and the majority. The Temple-Masjid controversy has become a focal point of Indian politics. Religious hatred in India is causing a huge loss of lives and property and is creating tension among the citizens. All the aspects of Indian politics that have been corrupted by religious fanaticism have been studied in this research paper. This paper mainly explores the causality of the influence of religion on Indian politics.Keywords: religion, Indian politics, equality and justice, Muslim society, political parties
Procedia PDF Downloads 1403536 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1273535 Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials
Authors: Van Truong Pham
Abstract:
Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care.Keywords: self-management, meta-analysis, blood pressure control, self-efficacy, medication adherence, body mass index
Procedia PDF Downloads 1283534 Entrepreneurship Education: A Panacea for Entrepreneurial Intention of University Undergraduates in Ogun State, Nigeria
Authors: Adedayo Racheal Agbonna
Abstract:
The rising level of graduate unemployment in Nigeria has brought about the introduction of entrepreneurship education as a career option for self–reliance and self-employment. Sequel to this, it is important to have an understanding of the determining factors of entrepreneurial intention. Therefore this research empirically investigated the influence of entrepreneurship education on entrepreneurial intention of undergraduate students of selected universities in Ogun State, Nigeria. The study is significant to researchers, university policy makers, and the government. Survey research design was adopted in the study. The population consisted of 17,659 final year undergraduate students universities in Ogun State. The study adopted stratified and random sampling technique. The table of sample size determination was used to determine the sample size for this study at 95% confidence level and 5% margin error to arrive at a sample size of 1877 respondents. The elements of population were 400 level students of the selected universities. A structured questionnaire titled 'Entrepreneurship Education and students’ Entrepreneurial intention' was administered. The result of the reliability test had the following values 0.716, 0.907 and 0.949 for infrastructure, perceived university support, and entrepreneurial intention respectively. In the same vein, from the construct validity test, the following values were obtained 0.711, 0.663 and 0.759 for infrastructure, perceived university support and entrepreneurial intention respectively. Findings of this study revealed that each of the entrepreneurship education variables significantly affected intention University infrastructure B= -1.200, R²=0.679, F (₁,₁₈₇₅) = 3958.345, P < 0.05) Perceived University Support B= -1.027, R²=0.502, F(₁,₁₈₇₅) = 1924.612, P < 0.05). The perception of respondents in public university and private university on entrepreneurship education have a statistically significant difference [F(₁,₁₈₇₅) = 134.614, p < 0.05) α F(₁,₁₈₇₅) = 363.439]. The study concluded that entrepreneurship education positively influenced entrepreneurial intention of undergraduate students in Ogun State, Nigeria. Also, university infrastructure and perceived university support have negative and significant effect on entrepreneurial intention. The study recommended that to promote entrepreneurial intention of university undergraduate students, infrastructures and the university support that can arouse entrepreneurial intention of students should be put in place.Keywords: entrepreneurship education, entrepreneurial intention, perceived university support, university infrastructure
Procedia PDF Downloads 2343533 Designing an Aerodynamic Braking in Order to Increase Power and Speed of Braking System of Vehicles
Authors: Hamidreza Ahmadi, Majid Abbasalizadeh, Ghasem Yazdani, Masoud Ahmadi
Abstract:
In this paper a special kind of aerodynamic system as a spoiler has been designed and tried to show effects of this devise on braking system of vehicle. Moreover, position of this spoiler has been considered in order to find optimum point from safety and highest rate of braking view for spoiler. Fluent software is our main tool to calculate rate of extra force that is produced by spoiler and this article has been tried to use various figures that are showed effects of spoiler at different speeds, angles and also heights. Other major points in this paper are static pressure of vehicle at different speed and statues. Undoubtedly, shape of spoiler would be very important, so in this investigation spoiler has been designed and proposed after a lot of simulation for different shape of spoiler. In the end, there is very important part as validation since these simulations must be validated by experimental way to prove our claims. In this case, a special kind of BMW has been simulated and results have been compared by experimental results that have been presented by BMW Company. Difference between simulation results and experimental results are very little and it could be a suitable validation for this project.Keywords: drag force, down force, vehicle, spoiler
Procedia PDF Downloads 3373532 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 753531 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 1243530 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams
Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi
Abstract:
Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model
Procedia PDF Downloads 2563529 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)
Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah
Abstract:
The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature
Procedia PDF Downloads 5273528 Undergraduate Students’ Learning Experience and Practices in Multilingual Higher Education Institutions: The Case of the University of Luxembourg
Authors: Argyro Maria Skourmalla
Abstract:
The present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, has adopted a new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. With around 7.000 students, more than half of which are international students, the University is a meeting point for languages and cultures. This paper includes data from an online survey that with undergraduate students from different disciplines at the University of Luxembourg. Students shared their personal experience and opinions regarding language use in this higher education context, as well as practices they use in learning in this multilingual context. Findings show the role of technology in assisting students in different aspects of learning this multilingual context. At the same time, more needs to be done to avoid an exclusively monolingual paradigm in higher education. Findings also show that some languages remain ‘unseen’ in this context. Overall, even though linguistic diversity in this University is seen as an asset, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.Keywords: higher education, learning, linguistic diversity, multilingual practices
Procedia PDF Downloads 653527 Relationship of Teachers' Personality and Peer Pressure on Adolescents' Personality Development in Mainland Local Government Area, Lagos State, Nigeria
Authors: Solomon Olusegun Olugbenro
Abstract:
The purpose of this study is to ascertain the relationship of teachers' personalty and peer pressure on adolescents' personalty in mainland local government, Lagos State, Nigeria. The research design for this study was survey. A representative fraction of the population of mainland local government of lagos was used as sample. One hundred and fifty (150) teenagers whose age ranged from 11-19 from six randomly selected public and private secondary schools in mainland local government area of lagos were used. A four-point likert type questionnaire was constructed for eliciting data for this study. Data were analysed using t-test. The study revealed that there is a significant relationship between teachers' and adolescents' personality development. The study also revealed that there is significant relationship between peer pressure and adolescents' personality development. It was recommended that teachers should be role models to students as they manipulate environmental factors to assist adolescents in their personality development.Keywords: adolescents, behavior, development, peer pressure, personality, relationship, significant, teachers
Procedia PDF Downloads 4443526 A Study of the Use of Arguments in Nominalizations as Instanciations of Grammatical Metaphors Finished in -TION in Academic Texts of Native Speakers
Authors: Giovana Perini-Loureiro
Abstract:
The purpose of this research was to identify whether the nominalizations terminating in -TION in the academic discourse of native English speakers contain the arguments required by their input verbs. In the perspective of functional linguistics, ideational metaphors, with nominalization as their most pervasive realization, are lexically dense, and therefore frequent in formal texts. Ideational metaphors allow the academic genre to instantiate objectification, de-personalization, and the ability to construct a chain of arguments. The valence of those nouns present in nominalizations tends to maintain the same elements of the valence from its original verbs, but these arguments are not always expressed. The initial hypothesis was that these arguments would also be present alongside the nominalizations, through anaphora or cataphora. In this study, a qualitative analysis of the occurrences of the five more frequent nominalized terminations in -TION in academic texts was accomplished, and thus a verification of the occurrences of the arguments required by the original verbs. The assembling of the concordance lines was done through COCA (Corpus of Contemporary American English). After identifying the five most frequent nominalizations (attention, action, participation, instruction, intervention), the concordance lines were selected at random to be analyzed, assuring the representativeness and reliability of the sample. It was possible to verify, in all the analyzed instances, the presence of arguments. In most instances, the arguments were not expressed, but recoverable, either in the context or in the shared knowledge among the interactants. It was concluded that the realizations of the arguments which were not expressed alongside the nominalizations are part of a continuum, starting from the immediate context with anaphora and cataphora; up to a knowledge shared outside the text, such as specific area knowledge. The study also has implications for the teaching of academic writing, especially with regards to the impact of nominalizations on the thematic and informational flow of the text. Grammatical metaphors are essential to academic writing, hence acknowledging the occurrence of its arguments is paramount to achieve linguistic awareness and the writing prestige required by the academy.Keywords: corpus, functional linguistics, grammatical metaphors, nominalizations, academic English
Procedia PDF Downloads 1463525 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 2973524 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 1473523 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms
Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin
Abstract:
This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.Keywords: machine learning, business models, convex analysis, online learning
Procedia PDF Downloads 1403522 Thermal Analysis of a Channel Partially Filled with Porous Media Using Asymmetric Boundary Conditions and LTNE Model
Authors: Mohsen Torabi, Kaili Zhang
Abstract:
This work considers forced convection in a channel partially filled with porous media from local thermal non-equilibrium (LTNE) point of view. The channel is heated with constant heat flux from the lower side and is isolated on the top side. The wall heat flux is considered to be divided between the solid and fluid phases based on their temperature gradients and effective thermal conductivities. The general forms of the velocity and temperature fields are analytically obtained. To obtain the constant parameters for temperature equations, a numerical solution is considered. Using different thermophysical parameters, both velocity and temperature fields are comprehensively illustrated. Discussions regarding bifurcation phenomenon are provided. Since this geometry has not been considered yet, the present analysis is a useful addition to the literature on thermal performance of porous systems from LTNE perspective.Keywords: local thermal non-equilibrium, forced convection, thermal bifurcation, porous-fluid interface, combined analytical-numerical solution
Procedia PDF Downloads 3653521 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt
Authors: Moustafa Osman
Abstract:
Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning
Procedia PDF Downloads 3743520 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion
Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin
Abstract:
Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis
Procedia PDF Downloads 182