Search results for: plant density
2184 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment
Authors: P. L. Cheng, I. N. Umar
Abstract:
Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.Keywords: e-learning, learning management system, online forum, social network analysis
Procedia PDF Downloads 3902183 Additive Manufacturing Optimization Via Integrated Taguchi-Gray Relation Methodology for Oil and Gas Component Fabrication
Authors: Meshal Alsaiari
Abstract:
Fused Deposition Modeling is one of the additive manufacturing technologies the industry is shifting to nowadays due to its simplicity and low affordable cost. The fabrication processing parameters predominantly influence FDM part strength and mechanical properties. This presentation will demonstrate the influences of the two manufacturing parameters on the tensile testing evaluation indexes, infill density, and Printing Orientation, which were analyzed to create a piping spacer suitable for oil and gas applications. The tensile specimens are made of two polymers, Acrylonitrile Styrene Acrylate (ASA) and High high-impact polystyrene (HIPS), to characterize the mechanical properties performance for creating the final product. The mechanical testing was carried out per the ASTM D638 testing standard, following Type IV requirements. Taguchi's experiment design using an L-9 orthogonal array was used to evaluate the performance output and identify the optimal manufacturing factors. The experimental results demonstrate that the tensile test is more pronounced with 100% infill for ASA and HIPS samples. However, the printing orientations varied in reactions; ASA is maximum at 0 degrees while HIPS shows almost similar percentages between 45 and 90 degrees. Taguchi-Gray integrated methodology was adopted to minimize the response and recognize optimal fabrication factors combinations.Keywords: FDM, ASTM D638, tensile testing, acrylonitrile styrene acrylate
Procedia PDF Downloads 932182 Biologic Materials- Ecological Living Network
Authors: Ina Dajci
Abstract:
Biologic Materials presents groundbreaking transdisciplinary research aimed at fostering new collaborative models across the Built Environment, Forestry, and Agriculture sectors. This initiative seeks to establish innovative paradigms for local and global material flows by developing a biocompatible, regenerative material economy. The project focuses on creating materials derived from biowaste and silvicultural practices, ensuring the preservation of endangered indigenous and vernacular techniques through the integration of emerging biosciences. By utilizing biomaterials sourced from agricultural waste and forest byproducts, the initiative incorporates fabrication methods recognized by UNESCO as ‘intangible cultural heritage of humanity,’ which are currently at risk. The structural, mechanical, and environmental properties of these materials are enhanced through advanced CAD-CAM fabrication, along with energy-efficient biochemical and bacterial processes that promote healthy indigo coloration. Furthermore, the integration of AI technologies in species selection facilitates a novel partnership model, enabling designers to collaborate effectively with forest managers and silviculture practitioners. This collaborative approach not only optimizes the use of plant-based materials but also enhances biodiversity and climate resilience in regional ecosystems. Overall, this project embodies a holistic strategy for addressing environmental challenges while revitalizing traditional practices and fostering sustainable innovation.Keywords: material, architecture, culture, heritage, ecology, environment
Procedia PDF Downloads 102181 Analytical and Numerical Investigation of Friction-Restricted Growth and Buckling of Elastic Fibers
Authors: Peter L. Varkonyi, Andras A. Sipos
Abstract:
The quasi-static growth of elastic fibers is studied in the presence of distributed contact with an immobile surface, subject to isotropic dry or viscous friction. Unlike classical problems of elastic stability modelled by autonomous dynamical systems with multiple time scales (slowly varying bifurcation parameter, and fast system dynamics), this problem can only be formulated as a non-autonomous system without time scale separation. It is found that the fibers initially converge to a trivial, straight configuration, which is later replaced by divergence reminiscent of buckling phenomena. In order to capture the loss of stability, a new definition of exponential stability against infinitesimal perturbations for systems defined over finite time intervals is developed. A semi-analytical method for the determination of the critical length based on eigenvalue analysis is proposed. The post-critical behavior of the fibers is studied numerically by using variational methods. The emerging post-critical shapes and the asymptotic behavior as length goes to infinity are identified for simple spatial distributions of growth. Comparison with physical experiments indicates reasonable accuracy of the theoretical model. Some applications from modeling plant root growth to the design of soft manipulators in robotics are briefly discussed.Keywords: buckling, elastica, friction, growth
Procedia PDF Downloads 1902180 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City
Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş
Abstract:
Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.Keywords: greenhousing, solar energy, direct radiation, renewable energy
Procedia PDF Downloads 4792179 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface
Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li
Abstract:
Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability
Procedia PDF Downloads 3882178 Carbon Capture and Storage: Prospects in India
Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg
Abstract:
The demand of energy is increasing at every part of the world. Thus, use of fossil fuel is efficient which results in large liberation of carbon dioxide in atmosphere. Tons of this CO2 raises the risk of dangerous climate changes. To minimize the risk carbon capture and storage (CCS) has to be used so that the emitted carbon dioxide do not reach the atmosphere. CCS is being considered as one of the options that could have a major role to play in India.With the growing awareness towards the global warming, carbon capture and sequestration has a great importance. New technologies and theories are in use to capture CO2. This paper contains the methodology and technologies that is in use to capture carbon dioxide in India. The present scenario of CCS is also being discussed. CCS is playing a major role in enhancing recovery of oil (ERO). Both the purpose 1) minimizing percentage of carbon dioxide in atmosphere and 2) enhancing recovery of oil are fulfilled from the CCS. The CO2 is usually captured from coal based power plant and from some industrial sources and then stored in the geological formations like oil and gas reservoir and deep aquifers or in oceans. India has large reservoirs of coal which are being used for storing CO2, as coal is a good absorbent of CO2. New technologies and studies are going on for injection purposes. Government has initiated new plans for CCS as CCS is technically feasible and economically attractive. A discussion is done on new schemes that should bring up CCS plans and approaches. Stakeholders are welcomed for suitability of CCS. There is still a need to potentially capture the CO2 and avail its storage in developing country like India.Keywords: Carbon Capture and Storage (CCS), carbon dioxide (CO2), enhance oil recovery, geological formations, stakeholders
Procedia PDF Downloads 4702177 A Hybrid Traffic Model for Smoothing Traffic Near Merges
Authors: Shiri Elisheva Decktor, Sharon Hornstein
Abstract:
Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).Keywords: highway merges, traffic modeling, SUMO, driving policy
Procedia PDF Downloads 1062176 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal
Authors: Ashna Babu, Deepshikha Jaiswal Nagar
Abstract:
Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram
Procedia PDF Downloads 692175 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂
Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park
Abstract:
We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition
Procedia PDF Downloads 2712174 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane
Authors: Livinus A. Obasi, Augustine N. Ajah
Abstract:
Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch
Procedia PDF Downloads 2562173 Effect of Silicon Sulphate and Silicic Acid Rates on Growth, Yield and Nutritional Status of Wheat (Triticum aestivum L.)
Authors: R. G. Shemi, M. A. Abo Horish, Kh. M. A. Mekled
Abstract:
The utilization of silicon (Si) sources is a crucial agricultural tool that requires optimization to promote sustainable practices. The application of Si provides the implementation of biological mechanisms of plant nutrition, growth promotion, and protection. The aims of this experiment were to investigate the relative efficacy of Si sources and levels on the growth, yield, and mineral content of wheat. The study examined the effects of silicon sulphate and silicic acid levels on growth, spike characteristics, yield parameters, and macro- and micronutrient concentrations of wheat during the 2-season. The entire above-indicated parameters were significantly (p < 0.05) increased with increasing levels of silicon sulphate and silicic acid compared to the control. Foliar application of silicon sulphate 150 ppm and silicic acid 60 ppm statistically (p < 0.05) enhanced grain N concentration and the grain yield by 136.14 and 77.85%, 43.49 and 34.52% in the 1st season, and by 78.62 and 54.40%, 43.53 and 33.18% in the 2nd season, respectively, as compared with control. Overall, foliar applications of silicon sulphate at 150 ppm and silicic acid at 60 ppm were greatly efficient amongst all Si levels and sources in improving growth and spike characters, increasing yield parameters, and elevating grain nutrients. Finally, the treatment of silicon sulfate at 150 ppm was more effective than the treatment of silicic acid at 60 ppm in increasing growth, grain nutrients, and productivity of wheat and attaining agricultural sustainability under experiment conditions.Keywords: wheat, silicon sulphate, silicic acid, grain nutrients
Procedia PDF Downloads 182172 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method
Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna
Abstract:
Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF
Procedia PDF Downloads 1972171 A Cross-Sectional Study on the Nutritional Status of School Going Children From Urban and Rural Populations of Pakistan
Authors: Aftab Ahmed, Farhan Saeed, Muhammad Afzaal, Shinawar Waseem Ali, Ali Imran, Sadaf Munir
Abstract:
Malnutrition is a globally increasing public health concern among children; it affects number of school children influencing their growth, development and academic performance. The tenet of the current cross sectional study was to assess the nutritional biomarkers of school going children of age 12-15 years resulting in stunting, underweight, overweight, bone deformities and other health disparities in nutritionally deprived urban and rural populations of Pakistan. A sample size comprising of 180 school going children was stipulated from the targeted urban and rural populations. The fallouts of investigation unveiled that both rural and urban populations were experiencing nutritional challenges however; on account of awareness paucity the rustic population was nutritionally more compromised. Hematological tests elucidated 16.7% and 7.8% cases for high glucose level, 35.6% and 27.8% cases for low hemoglobin levels, 14.4% and 15.6% cases for low calcium indices, 12.2% and 4.4% high white blood cell count (WBC), 20% and 14.4% low red blood cell count, 76.7% and 74.4% low hematocrit (HCT) values, among the rural and urban populations respectively. The above mentioned outcomes can serve as a way forward for policy and law maker institutions to curb the possible barricades in the way of healthy nutritional status in these areasKeywords: malnutrition, hematological study, child nutrition, bone mineral density, calcium, RBC
Procedia PDF Downloads 862170 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3782169 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications
Authors: Bryan D. Llenarizas, Maria Carla F. Manzano
Abstract:
The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole
Procedia PDF Downloads 812168 Insect Inducible Methanol Production in Plants for Insect Resistance
Authors: Gourav Jain, Sameer Dixit, Surjeet Kumar Arya, Praveen C. Verma
Abstract:
Plant cell wall plays a major role in defence mechanism against biotic and abiotic stress as it constitutes the physical barrier between the microenvironment and internal component of the cell. It is a complex structure composed of mostly carbohydrates among which cellulose and hemicelluloses are most abundant that is embedded in a matrix of pectins and proteins. Multiple enzymes have been reported which plays a vital role in cell wall modification, Pectin Methylesterase (PME) is one of them which catalyses the demethylesterification of homogalacturonans component of pectin which releases acidic pectin and methanol. As emitted methanol is toxic to the insect pest, we use PME gene for the better methanol production. In the current study we showed overexpression of PME gene isolated from Withania somnifera under the insect inducible promoter causes enhancement of methanol production at the time of insect feeds to plants, and that provides better insect resistance property. We found that the 85-90% mortality causes by transgenic tobacco in both chewing (Spodoptera litura larvae and Helicoverpa armigera) and sap-sucking (Aphid, mealybug, and whitefly) pest. The methanol content and emission level were also enhanced by 10-15 folds at different inducible time point interval (15min, 30min, 45min, 60min) which would be analysed by Purpald/Alcohol Oxidase method.Keywords: methanol, Pectin methylesterase, inducible promoters, Purpald/Alcohol oxidase
Procedia PDF Downloads 2442167 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials
Authors: M. Zafar, S. Rasheed, Imran Hashmi
Abstract:
Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.Keywords: biofilm, DWDs, pipe material, bacterial population
Procedia PDF Downloads 3472166 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI
Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz
Abstract:
Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI
Procedia PDF Downloads 5202165 Arundo Donax (Giant Reed) Phytoremediation Function of Chromium (Cr) Removal
Authors: Sadeg Abdurahman, Claudio Stockle, James Harsh, Marc Beutel, Usama Zaher
Abstract:
Pollution of the environment is a phenomenon which has taken a big part of importance of the world governments since the second half of the last century, this takes dangerous environmental, economic and social ranges dimensions especially after industrial advancement in industrialized country and good industrial expansion supported with modern technology and as chromium is known to be used in tannery factories. Chromium is considered a harm element to the environment due to its danger and transference through food, air, and water to the plants, animals and people. In this study the capacity of Arundo donax against chromium pollution was conducted. A. donax plants were grown-up under greenhouse conditions in pots contain nursery soil and feeding by Cr synthetic wastewater (0, 0.1, 1.0 and 2.0 mg L-1 ) for four weeks. Leaves, roots and stems dry matter production, color degree values, chlorophyll, growth parameters, and morphological characters were measured. The high Cr concentration was in roots was 1.15 mg kg-1 . Similarly, Cr concentration in stem was 0.469 mg kg-1 at 2.0 mg L-1 supplied Cr. In case of leaves, the maximum Cr concentration was 0.345 mg kg-1 at 2.0 g L-1 supplied Cr. The bioaccumulation and translocation factors was calculated. The macrophyte A. donax L. may be considered to be the most promising plant species in remediation of Cr-contaminated soil and wastewater due to its deeper root system as well as has higher efficiency to absorb chromium and other heavy metals as well.Keywords: Arundo donax, Chromium pollution, heavy metals, phytoremediation, wastewater
Procedia PDF Downloads 6812164 A Memristive Device with Intrinsic Rectification Behavior and Performace of Crossbar Arrays
Authors: Yansong Gao, Damith C.Ranasinghe, Siad F. Al-Sarawi, Omid Kavehei, Derek Abbott
Abstract:
Passive crossbar arrays is in principle the simplest functional electrical circuit, together with memristive device in cross-point, holding great promise in future high-density, non-volatile memories. However, the greatest problem of crossbar array is the sneak path current. In this paper, we investigate one type of memristive device with intrinsic rectification behavior to address the sneak path currents. Firstly, a SPICE behavior model written in Verilog-A language of the memristive device is presented to fit experimental data published in literature. Next, systematic performance simulations including read margin and power consumption of crossbar array, which uses the self-rectifying memristive device as storage element at cross-point, with respect to different crossbar sizes, interconnect resistance, ratio of HRS/LRS (High Resistance State/ Low Resistance State), rectification ratio and different read schemes are conducted. Subsequently, Trade-offs among reading margin, power consumption, and reading schemes are analyzed to provide guidelines for circuit design. Finally, performance comparison between the memristive device with/without intrinsic rectification behavior is given to show the worthiness of this intrinsic rectification behavior.Keywords: memristive device, memristor, crossbar, RRAM, read margin, power consumption
Procedia PDF Downloads 4362163 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)
Authors: Meltem Bolluk, Ismail Duman
Abstract:
Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.Keywords: amorphous boron, CVD, powder production, powder characterization
Procedia PDF Downloads 2172162 In-Silico Evaluation and Antihyperglycemic Potential of Leucas Cephalotes
Authors: Anjali Verma, Mahesh Pal, Veena Pande, Dalip Kumar Upreti
Abstract:
The present study is carried out to explore the anti-hyperglycemic activity of Leucas cephalotes plant parts. A fruit, leaves, stems, and roots part of the Leucas cephalotes has been extracted in ethanol and have been evaluated for anti-hyperglycemic activity. The present study indicated that, ethanolic extract of fruit and leaves have shown significant α- amylase inhibitory activity with IC50 value of 92.86 ± 0.89 μg/mL and 98.09 ± 0.69 μg/mL respectively. Two known compounds β-sitosterol and lupeol were isolated from ethanolic extract of L. cephalotes leaves and were subjected to anti-hyperglycemic activity. Lupeol shows the best activity with IC50 55.73 ± 0.47 μg/mL and the results were verified by docking study of these compounds with mammalian α-amylase was carried out on its active site. It was concluded from the study that β-sitosterol and lupeol form one H-bond interactions with the active site residues either Asp212 or Thr21. The estimated free energy binding of β-sitosterol was found to be -9.47 kcal mol-1 with an estimated inhibition constant (Ki) of 558.94 nmol whereas the estimated free energy binding of lupeol was -11.73 kcal mol-1 with an estimated inhibition constant (Ki) of 476.71pmmol. The present study clearly showed that lupeol is more potent in comparison to β-sitosterol. The study indicates that L. cephalotes have significant potential to inhibit α-amylase enzyme.Keywords: alpha-amylase, beta-sitosterol, hyperglycemia, lupeol
Procedia PDF Downloads 2112161 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell
Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh
Abstract:
Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity
Procedia PDF Downloads 1432160 Effect of Cabbage and Cauliflower Emitted Volatile Organic Compounds on Foraging Response of Plutella xylostella
Authors: Sumbul Farhat, Pratyay Vaibhav, Sarah Jain, Kapinder Kumar, Archna Kumar
Abstract:
The Diamondback Moth, Plutella xylostella (Linnaeus), is a major pest of cole crops that causes approximately 50% loss in global production. The utilization of inorganic pesticides is reflected in the development of resistance to this pest. Thus, there is a great need for an eco-friendly, sustainable strategy for the control of this pest. Although this pest, several natural enemies are reported worldwide, none of them can control it efficiently. Therefore, a proposed study is planned to understand the Volatile Organic Compounds (VOCs) mediated signaling interaction mechanism of the plant, pest, and natural enemy. For VOCs collection during different deployment stages of Cabbage POI, Green Ball, Pusa Cabbage, Cabbage Local, Snowball 16, Kanchan Plus, Pusa Meghna, Farm Sona Hybrid F1, and Samridhi F1 Hybrid, the Solid-phase microextraction (SPME) method was employed. Characterization of VOCs was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The impact of collected VOCs was assessed through Y-Tube Bioassays. The results indicate that the Cabbage variety Green Ball shows maximum repellency for P. xylostella (-100%). The cues present in this variety may be exploited for efficient management of P. xylostella in the cole crop ecosystem.Keywords: Plutella xylostella, cole crops, volatile organic compounds, GC-MS, Green Ball
Procedia PDF Downloads 1262159 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca), and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit
Authors: Nneka N. Uchegbu, Charles N. Ishiwu
Abstract:
The nutritional composition and hypoglycaemic effect of crackers produced from a blend of sprouted pigeon pea, unripe plantain, and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p < 0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour can be recommended for the diabetics and those who are sceptical about the disease.Keywords: crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain
Procedia PDF Downloads 4392158 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 1552157 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines
Authors: H. Al-Jabli
Abstract:
Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.Keywords: high saline brine, freeze-melting process, ice crystallization, brine disposal process
Procedia PDF Downloads 2682156 Control System Design for a Simulated Microbial Electrolysis Cell
Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen
Abstract:
Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller
Procedia PDF Downloads 2472155 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia
Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie
Abstract:
The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line
Procedia PDF Downloads 390