Search results for: velocity power spectra
3768 Grid Connected Photovoltaic Micro Inverter
Authors: S. J. Bindhu, Edwina G. Rodrigues, Jijo Balakrishnan
Abstract:
A grid-connected photovoltaic (PV) micro inverter with good performance properties is proposed in this paper. The proposed inverter with a quadrupler, having more efficiency and less voltage stress across the diodes. The stress that come across the diodes that use in the inverter section is considerably low in the proposed converter, also the protection scheme that we provided can eliminate the chances of the error due to fault. The proposed converter is implemented using perturb and observe algorithm so that the fluctuation in the voltage can be reduce and can attain maximum power point. Finally, some simulation and experimental results are also presented to demonstrate the effectiveness of the proposed converter.Keywords: DC-DC converter, MPPT, quadrupler, PV panel
Procedia PDF Downloads 8463767 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 3323766 Quantum Entanglement and Thermalization in Superconducting Two-Qubit Systems
Authors: E. Karami, M. Bohloul, P. Najmadi
Abstract:
The superconducting system is a suitable system for quantum computers. Quantum entanglement is a fundamental phenomenon that is key to the power of quantum computers. Quantum entanglement has been studied in different superconducting systems. In this paper, we are investigating a superconducting two-qubit system as a macroscopic system. These systems include two coupled Quantronium circuits. We calculate quantum entanglement and thermalization for system evolution and compare them. We observe, thermalization and entanglement have different behavior, and equilibrium thermal state has maximum entanglement.Keywords: macroscopic system, quantum entanglement, thermalization, superconducting system
Procedia PDF Downloads 1613765 Messiness and Strategies for Elite Interview: Multi-Sited Ethnographic Research in Mainland China
Authors: Yali Liu
Abstract:
The ethnographic research involved a multi-sited field trip study in China to compile in-depth data from Chinese multilingual academics of Korean, Japanese, and Russian. It aimed to create a culturally-informed portrait of their values and perceptions regarding their choice of language for academic publishing. Extended and lengthy fieldwork, or known as ‘deep hanging out’, enabled the author to gain a comprehensive understanding of the research context at the macro-level and the participants’ experiences at the micro-level. This research involved multiple fieldwork sites, which the author selected in acknowledgment of the diversity in China’s regions with respect to their geopolitical context, socio-economic development, cultural traditions, and administrative status. The 14 weeks of data collection took the author over-land to five regions in northern China: Hebei province, Tianjin, Jilin province, Gansu province, and Xinjiang. Responding to the fieldwork dynamics, the author positioned herself at different degrees of insiderness and outsiderness. This occurred at three levels: the regional level, the individual level, and the within-individual level. To enhance the ability to reflect on the authors’ researcher subjectivity, the author explored her understanding of the five ‘I’s, derived from the authors’ natural attributes. This helped the author to monitor her subjectivity, particularly during critical decision-making. The methodological challenges the author navigated were related to interviewing elites; this involved the initial approach, establishing a relationship, and negotiating the unequal power relationship during our contact. The author developed a number of strategies to strengthen her authority, and to gain the confidence of her envisaged participants and secure their collaboration, and the author negotiated a form of reciprocity that reflected their needs and expectations. The current ethnographic research has both theoretical and practical significance. It contributes to the methodological development regarding multi-sited ethnographic research. The messiness and strategies about positioning and interviewing elites will provide practical lessons for researchers who conduct ethnographic research, especially from power-‘less’ positions.Keywords: multi-sited ethnographic research, elite interview, multilingual China, subjectivity, reciprocity
Procedia PDF Downloads 1143764 Efficient Variable Modulation Scheme Based on Codebook in the MIMO-OFDM System
Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
Because current wireless communication requires high reliability in a limited bandwidth environment, this paper proposes the variable modulation scheme based on the codebook. The variable modulation scheme adjusts transmission power using the codebook in accordance with hannel state. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme. The simulation results show that the performance of proposed scheme has better reliability than the the performance of conventional scheme.Keywords: MIMO-OFDM, variable modulation, codebook, channel state
Procedia PDF Downloads 5903763 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration
Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire
Abstract:
Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization
Procedia PDF Downloads 1633762 Application of Analytical Method for Placement of DG Unit for Loss Reduction in Distribution Systems
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
The main aim of the paper is to implement a technique using distributed generation in distribution systems to reduce the distribution system losses and to improve voltage profiles. The fuzzy logic technique is used to select the proper location of DG and an analytical method is proposed to calculate the size of DG unit at any power factor. The optimal sizes of DG units are compared with optimal sizes obtained using the genetic algorithm. The suggested method is programmed under Matlab software and is tested on IEEE 33 bus system and the results are presented.Keywords: DG Units, sizing of DG units, analytical methods, optimum size
Procedia PDF Downloads 4773761 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine
Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence
Procedia PDF Downloads 2933760 Control of Photovoltaic System Interfacing Grid
Authors: Zerzouri Nora
Abstract:
In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid
Procedia PDF Downloads 1253759 Decentralised Edge Authentication in the Industrial Enterprise IoT Space
Authors: C. P. Autry, A.W. Roscoe
Abstract:
Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.Keywords: authentication, enterprise IoT cybersecurity, PKI/TTP, IoT space
Procedia PDF Downloads 1773758 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients
Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger
Abstract:
Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke
Procedia PDF Downloads 953757 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.Keywords: distributed generation, distribution network, radial network, wind turbine generating system
Procedia PDF Downloads 4113756 A Framework for Consumer Selection on Travel Destinations
Authors: J. Rhodes, V. Cheng, P. Lok
Abstract:
The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust
Procedia PDF Downloads 4593755 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies
Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab
Abstract:
Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve
Procedia PDF Downloads 5703754 A Long Range Wide Area Network-Based Smart Pest Monitoring System
Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee
Abstract:
This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II
Procedia PDF Downloads 3563753 Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy
Authors: M. S. Stepanova, V. V. Zakharov, P. D. Khavlyuk, I. D. Skurlov, A. Y. Dubovik, A. L. Rogach
Abstract:
Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08.Keywords: carbon dots, photoactivation, optical properties, photoluminescence and absorption spectra
Procedia PDF Downloads 1703752 Effect of Cooking Process on the Antioxidant Activity of Different Variants of Tomato-Based Sofrito
Authors: Ana Beltran Sanahuja, A. Valdés García, Saray Lopez De Pablo Gallego, Maria Soledad Prats Moya
Abstract:
Tomato consumption has greatly increased worldwide in the last few years, mostly due to a growing demand for products like sofrito. In this sense, regular consumption of tomato-based products has been consistently associated with a reduction in the incidence of chronic degenerative diseases. The sofrito is a homemade tomato sauce typical of the Mediterranean area, which contains as main ingredients: tomato, onion, garlic and olive oil. There are also sofrito’s variations by adding other spices which bring at the same time not only color, flavor, smell and or aroma; they also provide medicinal properties, due to their antioxidant power. This protective effect has mainly been attributed to the predominant bioactive compounds present in sofrito, such as lycopene and other carotenoids as well as more than 40 different polyphenols. Regarding the cooking process, it is known that it can modify the properties and the availability of nutrients in sofrito; however, there is not enough information regarding this issue. For this reason, the aim of the present work is to evaluate the cooking effect on the antioxidant capacity of different variants of tomato-based sofrito combined with other spices, through the analysis of total phenols content (TPC) and to evaluate the antioxidant capacity by using the method of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Based on the results obtained, it can be confirmed that the basic sofrito composed of tomato, onion, garlic and olive oil and the sofrito with 1 g of rosemary added, are the ones with the highest content of phenols presenting greater antioxidant power than other industrial sofrito, and that of other variables of sofrito with added thyme or higher amounts of garlic. Moreover, it has been observed that in the elaboration of the tomato-based sofrito, it is possible to cook until 60 minutes, since the cooking process increases the bioavailability of the carotenoids when breaking the cell walls, which weakens the binding forces between the carotenoids and increases the levels of antioxidants present, confirmed both with the TPC and DPPH methods. It can be concluded that the cooking process of different variants of tomato-based sofrito, including spices, can improve the antioxidant capacity. The synergistic effects of different antioxidants may have a greater protective effect; increasing, also, the digestibility of proteins. In addition, the antioxidants help to deactivate the free radicals of diseases such as atherosclerosis, aging, immune suppression, cancer, and diabetes.Keywords: antioxidants, cooking process, phenols sofrito
Procedia PDF Downloads 1433751 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines
Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior
Abstract:
Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro
Procedia PDF Downloads 2823750 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip
Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum
Abstract:
3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits
Procedia PDF Downloads 3073749 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability
Procedia PDF Downloads 3313748 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach
Authors: N. V. Kazmiruk, Y. R. Nartsissov
Abstract:
Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling
Procedia PDF Downloads 1233747 Energy Efficient Refrigerator
Authors: Jagannath Koravadi, Archith Gupta
Abstract:
In a world with constantly growing energy prices, and growing concerns about the global climate changes caused by increased energy consumption, it is becoming more and more essential to save energy wherever possible. Refrigeration systems are one of the major and bulk energy consuming systems now-a-days in industrial sectors, residential sectors and household environment. Refrigeration systems with considerable cooling requirements consume a large amount of electricity and thereby contribute greatly to the running costs. Therefore, a great deal of attention is being paid towards improvement of the performance of the refrigeration systems in this regard throughout the world. The Coefficient of Performance (COP) of a refrigeration system is used for determining the system's overall efficiency. The operating cost to the consumer and the overall environmental impact of a refrigeration system in turn depends on the COP or efficiency of the system. The COP of a refrigeration system should therefore be as high as possible. Slight modifications in the technical elements of the modern refrigeration systems have the potential to reduce the energy consumption, and improvements in simple operational practices with minimal expenses can have beneficial impact on COP of the system. Thus, the challenge is to determine the changes that can be made in a refrigeration system in order to improve its performance, reduce operating costs and power requirement, improve environmental outcomes, and achieve a higher COP. The opportunity here, and a better solution to this challenge, will be to incorporate modifications in conventional refrigeration systems for saving energy. Energy efficiency, in addition to improvement of COP, can deliver a range of savings such as reduced operation and maintenance costs, improved system reliability, improved safety, increased productivity, better matching of refrigeration load and equipment capacity, reduced resource consumption and greenhouse gas emissions, better working environment, and reduced energy costs. The present work aims at fabricating a working model of a refrigerator that will provide for effective heat recovery from superheated refrigerant with the help of an efficient de-superheater. The temperature of the refrigerant and water in the de-super heater at different intervals of time are measured to determine the quantity of waste heat recovered. It is found that the COP of the system improves by about 6% with the de-superheater and the power input to the compressor decreases by 4 % and also the refrigeration capacity increases by 4%.Keywords: coefficiency of performance, de-superheater, refrigerant, refrigeration capacity, heat recovery
Procedia PDF Downloads 3233746 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated
Authors: Shiang-Hwua Yu, Po-Hsun Wu
Abstract:
This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.Keywords: self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier
Procedia PDF Downloads 3613745 High-Speed Electrical Drives and Applications: A Review
Authors: Vaishnavi Patil, K. M. Kurundkar
Abstract:
Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.Keywords: high-speed, electrical machines, drives, applications
Procedia PDF Downloads 723744 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete
Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran
Abstract:
The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.Keywords: activator solution, GGBS, fly ash, metakaolin
Procedia PDF Downloads 4713743 Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam
Authors: I.J. Kim, B.C. Kim, J.H. Kim, C.-Y. Yi
Abstract:
Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %.Keywords: graphite calorimeter, finite element analysis, heat transfer, quasi-adiabatic mode
Procedia PDF Downloads 4313742 Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)
Authors: Jaber Nikpouri, Arsalan Amralizadeh
Abstract:
In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance.Keywords: biogeography-based optimization, path planning, obstacle detection, robotic manipulator
Procedia PDF Downloads 3083741 Study of a Lean Premixed Combustor: A Thermo Acoustic Analysis
Authors: Minoo Ghasemzadeh, Rouzbeh Riazi, Shidvash Vakilipour, Alireza Ramezani
Abstract:
In this study, thermo acoustic oscillations of a lean premixed combustor has been investigated, and a mono-dimensional code was developed in this regard. The linearized equations of motion are solved for perturbations with time dependence〖 e〗^iwt. Two flame models were considered in this paper and the effect of mean flow and boundary conditions were also investigated. After manipulation of flame heat release equation together with the equations of flow perturbation within the main components of the combustor model (i.e., plenum/ premixed duct/ and combustion chamber) and by considering proper boundary conditions between the components of model, a system of eight homogeneous equations can be obtained. This simplification, for the main components of the combustor model, is convenient since low frequency acoustic waves are not affected by bends. Moreover, some elements in the combustor are smaller than the wavelength of propagated acoustic perturbations. A convection time is also assumed to characterize the required time for the acoustic velocity fluctuations to travel from the point of injection to the location of flame front in the combustion chamber. The influence of an extended flame model on the acoustic frequencies of combustor was also investigated, assuming the effect of flame speed as a function of equivalence ratio perturbation, on the rate of flame heat release. The abovementioned system of equations has a related eigenvalue equation which has complex roots. The sign of imaginary part of these roots determines whether the disturbances grow or decay and the real part of these roots would give the frequency of the modes. The results show a reasonable agreement between the predicted values of dominant frequencies in the present model and those calculated in previous related studies.Keywords: combustion instability, dominant frequencies, flame speed, premixed combustor
Procedia PDF Downloads 3813740 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.Keywords: waste management, environmental protection, image processing, computer vision
Procedia PDF Downloads 1243739 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking
Procedia PDF Downloads 150