Search results for: service learning
5872 Teaching English for Specific Purposes to Business Students through Social Media
Authors: Candela Contero Urgal
Abstract:
Using realia to teach English for Specific Purposes (ESP) is a must, as it is thought to be designed to meet the students’ real needs in their professional life. Teachers are then expected to offer authentic materials and set students in authentic contexts where their learning outcomes can be highly meaningful. One way of engaging students is using social networks as a way to bridge the gap between their everyday life and their ESP learning outcomes. It is in ESP, particularly in Business English teaching, that our study focuses, as the ongoing process of digitalization is leading firms to use social media to communicate with potential clients. The present paper is aimed at carrying out a case study in which different digital tools are employed as a way to offer a collection of formats businesses are currently using so as to internationalize and advertise their products and services. A secondary objective of our study will then be to progress on the development of multidisciplinary competencies students are to acquire during their degree. A two-phased study will be presented. The first phase will cover the analysis of course tasks accomplished by undergraduate students at the University of Cadiz (Spain) in their third year of the Degree in Business Management and Administration by comparing the results obtained during the years 2019 to 2021. The second part of our study will present a survey conducted to these students in 2021 and 2022 so as to verify their interest in learning new ways to digitalize as well as internationalize their future businesses. Findings will confirm students’ interest in working with updated realia in their Business English lessons, as a consequence of their strong belief in the necessity to have authentic contexts and didactic resources. Despite the limitations social media can have as a means to teach business English, students will still find it highly beneficial since it will foster their familiarisation with the digital tools they will need to use when they get to the labour market.Keywords: English for specific purposes, business English, internationalization of higher education, foreign language teaching
Procedia PDF Downloads 1155871 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh
Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig
Abstract:
Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg
Procedia PDF Downloads 465870 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body
Authors: Alex Elentukh
Abstract:
The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering
Procedia PDF Downloads 1035869 Articulating Competencies Confidently: Employability in the Curriculum
Authors: Chris Procter
Abstract:
There is a significant debate on the role of University education in developing or teaching employability skills. Should higher education attempt to do this? Is it the best place? Is it able to do so? Different views abound, but the question is wrongly posed – one of the reasons that previous employability initiatives foundered (e.g., in the UK). Our role is less to teach than to guide, less to develop and more to help articulate: “the mind is not a vessel to be filled, but a fire to be lit” (Plutarch). This paper then addresses how this can be achieved taking into account criticism of employability initiatives as well as relevant learning theory. It discusses the experience of a large module which involved students being assessed on all stages of application for a live job description together with reflection on their professional development. The assessment itself adopted a Patchwork Text approach as a vehicle for learning. Students were guided to evaluate their strengths and areas to be developed, articulate their competencies, and reflect upon their development, moving on to new Thresholds of Employability. The paper uses the student voices to express the progress they made. It concludes that employability can and should be an effective part of the higher education curriculum when designed to encourage students to confidently articulate their competencies and take charge of their own professional development.Keywords: competencies, employability, patchwork assessment, threshold concepts
Procedia PDF Downloads 2165868 Spelling Errors in Persian Children with Developmental Dyslexia
Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari
Abstract:
Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing
Procedia PDF Downloads 4285867 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels
Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain
Abstract:
The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde
Procedia PDF Downloads 2625866 Investigating Elements That Influence Higher Education Institutions’ Digital Maturity
Authors: Zarah M. Bello, Nathan Baddoo, Mariana Lilley, Paul Wernick
Abstract:
In this paper, we present findings from a multi-part study to evaluate candidate elements reflecting the level of digital capability maturity (DCM) in higher education and the relationship between these elements. We will use these findings to propose a model of DCM for educational institutions. We suggest that the success of learning in higher education is dependent in part on the level of maturity of digital capabilities of institutions as well as the abilities of learners and those who support the learning process. It is therefore important to have a good understanding of the elements that underpin this maturity as well as their impact and interactions in order to better exploit the benefits that technology presents to the modern learning environment and support its continued improvement. Having identified ten candidate elements of digital capability that we believe support the level of a University’s maturity in this area as well as a number of relevant stakeholder roles, we conducted two studies utilizing both quantitative and qualitative research methods. In the first of these studies, 85 electronic questionnaires were completed by various stakeholders in a UK university, with a 100% response rate. We also undertook five in-depth interviews with management stakeholders in the same university. We then utilized statistical analysis to process the survey data and conducted a textual analysis of the interview transcripts. Our findings support our initial identification of candidate elements and support our contention that these elements interact in a multidimensional manner. This multidimensional dynamic suggests that any proposal for improvement in digital capability must reflect the interdependency and cross-sectional relationship of the elements that contribute to DCM. Our results also indicate that the notion of DCM is strongly data-centric and that any proposed maturity model must reflect the role of data in driving maturity and improvement. We present these findings as a key step towards the design of an operationalisable DCM maturity model for universities.Keywords: digital capability, elements, maturity, maturity framework, university
Procedia PDF Downloads 1435865 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers
Authors: Francesca Perri
Abstract:
This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.Keywords: digital didactics, education, language learning, teacher training
Procedia PDF Downloads 1555864 Teacher’s Perception of Dalcroze Method Course as Teacher’s Enhancement Course: A Case Study in Hong Kong
Authors: Ka Lei Au
Abstract:
The Dalcroze method has been emerging in music classrooms, and music teachers are encouraged to integrate music and movement in their teaching. Music programs in colleges in Hong Kong have been introducing method courses such as Orff and Dalcroze method in music teaching as teacher’s education program. Since the targeted students of the course are music teachers who are making the decision of what approach to use in their classroom, their perception is significantly valued to identify how this approach is applicable in their teaching in regards to the teaching and learning culture and environment. This qualitative study aims to explore how the Dalcroze method as a teacher’s education course is perceived by music teachers from three aspects: 1) application in music teaching, 2) self-enhancement, 3) expectation. Through the lens of music teachers, data were collected from 30 music teachers who are taking the Dalcroze method course in music teaching in Hong Kong by the survey. The findings reveal the value and their intention of the Dalcroze method in Hong Kong. It also provides a significant reference for better development of such courses in the future in adaption to the culture, teaching and learning environment and teacher’s, student’s and parent’s perception of this approach.Keywords: Dalcroze method, music teaching, perception, self-enhancement, teacher’s education
Procedia PDF Downloads 4055863 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 915862 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 5375861 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 2535860 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3055859 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective
Authors: Hoa Pham
Abstract:
The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.Keywords: codeswitching, L1 use, L2 teaching, learners’ perception
Procedia PDF Downloads 3245858 Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 1325857 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 385856 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework
Authors: Robert Pocklington
Abstract:
Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language
Procedia PDF Downloads 1105855 Learning And Teaching Conditions For Students With Special Needs: Asset-Oriented Perspectives And Approaches
Authors: Dr. Luigi Iannacci
Abstract:
This research critically explores the current educational landscape with respect to special education and dominant deficit/medical model discourses that continue to forward unresponsive problematic approaches to teaching students with disabilities. Asset-oriented perspectives and social/critical models of disability are defined and explicated in order to offer alternatives to these dominant discourses. To that end, a framework that draws on Brian Camborne’s conditions of learning and applications of his work in relation to instruction conceptualize learning conditions and their significance to students with special needs. Methodologically, the research is designed as Critical Narrative Inquiry (CNI). Critical incidents, interviews, documents, artefacts etc. are drawn on and narratively constructed to explore how disability is presently configured in language, discourses, pedagogies and interactions with students deemed disabled. This data was collected using ethnographic methods and as such, through participant-observer field work that occurred directly in classrooms. This narrative approach aims to make sense of complex classroom interactions and ways of reconceptualizing approaches to students with special needs. CNI is situated in the critical paradigm and primarily concerned with culture, language and participation as issues of power in need of critique with the intent of change in the direction of social justice. Research findings highlight the ways in which Cambourne’s learning conditions, such as demonstration, approximation, engagement, responsibility, immersion, expectation, employment (transfer, use), provide a clear understanding of what is central to and constitutes a responsive and inclusive this instructional frame. Examples of what each of these conditions look like in practice are therefore offered in order to concretely demonstrate the ways in which various pedagogical choices and questions can enable classroom spaces to be responsive to the assets and challenges students with special needs have and experience. These particular approaches are also illustrated through an exploration of multiliteracies theory and pedagogy and what this research and approach allows educators to draw on, facilitate and foster in terms of the ways in which students with special needs can make sense of and demonstrate their understanding of skills, content and knowledge. The contextual information, theory, research and instructional frame focused on throughout this inquiry ultimately demonstrate what inclusive classroom spaces and practice can look like. These perspectives and conceptualizations are in stark contrast to dominant deficit driven approaches that ensure current pedagogically impoverished teaching focused on narrow, limited and limiting understandings of special needs learners and their ways of knowing and acquiring/demonstrating knowledge.Keywords: asset-oriented approach, social/critical model of disability, conditions for learning and teaching, students with special needs
Procedia PDF Downloads 695854 The Role of Building Services in Energy Conservation into Residential Buildings
Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan
Abstract:
The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder
Procedia PDF Downloads 2945853 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method
Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin
Abstract:
Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis
Procedia PDF Downloads 555852 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model
Authors: Danjuma Bawa
Abstract:
This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics
Procedia PDF Downloads 1475851 Opinions and Perceptions of Clinical Staff towards Caring for Obese Patients: A Qualitative Research Study in a Cardiac Centre in Bahrain
Authors: Catherine Mary Abou-Zaid, Sandra Goodwin
Abstract:
This study was conducted in a cardiac center in Bahrain. The rise in the amount of obese patients’ both men and women, being admitted for surgical procedures has become an issue to the nurses and doctors as these patients pose a high risk of major complications arising from their problem. The cessation of obesity in the country is very high and obesity-related diseases has been the cause of concern among men and women, also related individual diseases such as cardiovascular, diabetes and chronic respiratory diseases are rising dramatically within Bahrain in the last 10 years. Rationale for the Study: The ontological approach will help to understand and assess the true nature of the social world and how the world looks at obesity. Obesity has to be looked at as being a realistic ongoing issue. The epistemological approach will look at the theory of the origins of the nature of knowledge, set the rule of validating and learning in the social world of what can be done to curb this concept and how this can help prevent otherwise preventable diseases. Design Methodology: The qualitative design methodology took the form of an ontological/epistemological approach using phenomenology as a framework. The study was based on a social research issue, therefore, ontological ‘realism and idealism’ will feature as the nature of the world from a social and natural context. Epistemological positions of the study will be how we as researchers will find the actual social world and the limiting of that knowledge. The one-to-one interviews will be transcribed and the taped verbatim will be coded and charted giving the thematic analytic results. Recommendations: The significance of the research brought many recommendations. These recommendations were taken from the themes and sub-themes and were presented to the centers management and the necessary arrangements for updating knowledge and attitudes towards obesity in cardiac patients was then presented to the in-service education department. Workshops and training sessions on promoting health education were organized and put into the educational calendar for the next academic year. These sessions would look at patient autonomy, the patients’ rights, healthy eating for patients and families and the risks associated with obesity in cardiac disease processes.Keywords: cardiac patients, diabetes, education & training, obesity cessation, qualitative
Procedia PDF Downloads 3325850 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 1785849 Instructional Consequences of the Transiency of Spoken Words
Authors: Slava Kalyuga, Sujanya Sombatteera
Abstract:
In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.Keywords: cognitive load, transient information, modality effect, verbal redundancy effect
Procedia PDF Downloads 3805848 Better Together: Diverging Trajectories of Local Social Work Practice and Nationally-Regulated Social Work Education in the UK
Authors: Noel Smith
Abstract:
To achieve professional registration, UK social workers need to complete a programme of education and training which meets standards set down by central government. When it comes to practice, social work in local authorities must fulfil requirements of national legislation but there is considerable local variation in the organisation and delivery of services. This presentation discusses the on-going reform of social work education by central government in the context of research of social work services in a local authority. In doing so it highlights that the ‘direction of travel’ of the national reform of social work education seems at odds with the trajectory of development of local social work services. In terms of education reform, the presentation cites key government initiatives including the knowledge and skills requirements which have been published separately for, respectively, child and family social work and adult social work. Also relevant is the Government’s new ‘teaching partnership’ pilot which focuses exclusively on social work in local government, in isolation from social work in NGOs. In terms of research, the presentation discusses two studies undertaken by Professor Smith in Suffolk County Council, a local authority in the east of England. The first is an equality impact analysis of the introduction of a new model for the delivery of adult and community services in Suffolk. This is based on qualitative research with local government representatives and NGOs involved in social work with older people and people with disabilities. The second study is an on-going, mixed method evaluation of the introduction of a new model of social care for children and young people in Suffolk. This new model is based on the international ‘Signs of Safety’ approach, which is applied in this model to a wide range of services from early intervention to child protection. While both studies are localised, the service models they examine are good illustrations of the way services are developing nationally. Analysis of these studies suggest that, if services continue to develop as they currently are, then social workers will require particular skills which are not be adequately addressed in the Government’s plans for social work education. Two issues arise. First, education reform concentrates on social work within local government while increasingly local authorities are outsourcing service provision to NGOs, expecting greater community involvement in providing care, and integrating social care with health care services. Second, education reform focuses on the different skills required for working with older and disabled adults and working with children and families, to the point where potentially the profession would be fragmented into two different classes of social worker. In contrast, the development of adult and children’s services in local authorities re-asserts the importance of common social work skills relating to personalisation, prevention and community development. The presentation highlights the importance for social work education in the UK to be forward looking, in terms of the changing design of service delivery, and outward looking, in terms of lessons to be drawn from international social work.Keywords: adult social work, children and families social work, European social work, social work education
Procedia PDF Downloads 3005847 Demand of Media and Information for the Public Relation Media for Local Learning Resource Salaya, Nakhon Pathom
Authors: Patsara Sirikamonsin, Sathapath Kilaso
Abstract:
This research aims to study the media and information demand for public relations in Salaya, Nakhonpathom. The research objectives are: 1. to research on conflicts of communication and seeking solutions and improvements of media information in Salaya, Nakhonpathom; 2. to study about opinions and demand for media information to reach out the improvements of people communications among Salaya, Nakhonpathom; 3. to explore the factors related to relationship and behaviors on obtaining media information for public relations among Salaya, Nakhonpathom. The research is conducted by questionnaire which is interpreted by statistical analysis concluding with analysis, frequency, percentage, average and standard deviations. The research results demonstrate: 1. The conflicts of communications among Salaya, Nakhonpathom are lacking equipment and technological knowledge and public relations. 2. Most people have demand on media improvements for vastly broadcasting public relations in order to nourish the social values. This research intentionally is to create the infographic media which are easily accessible, uncomplicated and popular, in the present.Keywords: media and information, the public relation printed media, local learning resource
Procedia PDF Downloads 1605846 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1375845 Teachers of the Pandemic: Retention, Resilience, and Training
Authors: Theoni Soublis
Abstract:
The COVID-19 pandemic created a severe interruption in teaching and learning in K-12 schools. It is essential that educational researchers, teachers, and administrators understand the long term effects that COVID-19 had on a variety of stakeholders in education. This investigation aims to analyze the research since the beginning of the pandemic that focuses specifically on teacher retention, resilience, and training. The results of this investigation will help to inform future research in order to better understand how the institution of education can continue to be prepared and to better prepare for future significant shifts in the modalities of instruction. The results of this analysis will directly impact the field of education as it will broaden the scope of understanding regarding how COVID- 19 impacted teaching and learning. The themes that will emerge from the data analysis will directly inform policy makers, administrators, and researchers about how to best implement training and curriculum design in order to support teacher effectiveness this in the classroom. Educational researchers have written about how teacher morale plummeted and how many teachers reported early burnout and higher stress levels. Teachers’ stress and anxiety soared during the COVID-19 pandemic, but so has their resilience and dedication to the field of education. This research aims to understand how public-school teachers overcame teaching obstacles presented to them during COVID-19. Research has been conducted to identify a variety of information regarding the impact the pandemic has had on K-12 teachers, students, and families. This research aims to understand how teachers continued to pursue their teaching objectives without significant training of effective online instruction methods. Not many educators even heard of the video conferencing platform Zoom before the spring of 2020. Researchers are interested in understanding how teachers used their expertise, prior knowledge, and training to institute immediate and effective online learning environments, what types of relationships did teachers build with students while teaching 100% remotely, and how did relationships change with students while teaching remotely? Furthermore, did the teacher-student relationship propel teacher resolve to be successful while teaching during a pandemic. Recent world events have significantly impacted the field of public-school teaching. The pandemic forced teachers to shift their paradigm about how to maintain high academic expectations, meet state curriculum standards, and assess students learning gains to make data-informed decisions while simultaneously adapting modes of instruction through multiple outlets with little to no training on remote, synchronous, asynchronous, virtual, and hybrid teaching. While it would be very interesting to study how teaching positively impacted students learning during the pandemic, I am more interested in understanding how teaches stayed the course and maintained their mental health while dealing with the stress and pressure of teaching during COVID-19.Keywords: teacher retention, COVID-19, teacher education, teacher moral
Procedia PDF Downloads 855844 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 525843 Antecedents of Teaching Skill for Students’ Psychological Enhancement in University Lecturers
Authors: Duangduen L. Bhanthumnavin, Duchduen E. Bhanthumnavin
Abstract:
Widening gap between new academic knowledge in all areas and habit of exploring and exploiting this precious information by students causes an alarm and need for urgent prevention. At present, all advanced nations are committed to WHO’s Sustainable Development Goals (SDGs), which require some objective achievements by the year 2030 and further. The responsibility has been enforced on university lecturers, in addition to the higher education learning outcomes (HELO). The two groups of goals (SDGs and HELO) can be realized if most university instructors are capable of inculcating some important psychological characteristics and behavioral change in the new generations. Thus, this study aimed at pinpointing the significant factors for additional teaching skills of instructors regardless of the area of study. University lecturers from various parts of Thailand, with the total of 540 persons, participated in this cross-sectional study. Based on interactionism model of behavior antecedents, it covers psychological situational factors, as well as their interaction. Most measuring instruments were summated rating with 10 or more items, each accompanied by a six-point rating scale. All these measures were constructed with acceptable standards. Most of the respondents were volunteers who gave their written responses in a meeting room or conference hall. By applying Multiple Regression Analysis in the total sample as well as in the subsamples of these university instructors, about 70 to 73 predictive percentages with 4 to 6 significant predictors were found. The major dependent variable was instructor’s teaching behavior for inculcating the psycho-moral strength for academic exploration and knowledge application. By performing ANOVA, the less-active instructors were identified as the ones with lower education (Master’s level or lower), the minimal research producers, and the ones with less in-service trainings. The preventive factors for these three groups of instructors were intention to increase the students’ psychological development as well as moral development in their regular teaching classes. In addition, social support from their supervisors and coworkers was also necessary. Recommendations for further research and training are offered and welcomed.Keywords: psychological inculcation, at-risk instructors, preventive measures, undergraduate teaching
Procedia PDF Downloads 60