Search results for: recurrent neural network
949 Neuroinflammation in Late-Life Depression: The Role of Glial Cells
Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang
Abstract:
Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway
Procedia PDF Downloads 44948 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 349947 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation
Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates
Abstract:
The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.Keywords: biomass, distribuited generation, small-scale, Monte Carlo
Procedia PDF Downloads 285946 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 97945 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia
Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke
Abstract:
Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia
Procedia PDF Downloads 31944 Aluminum Based Hexaferrite and Reduced Graphene Oxide a Suitable Microwave Absorber for Microwave Application
Authors: Sanghamitra Acharya, Suwarna Datar
Abstract:
Extensive use of digital and smart communication createsprolong expose of unwanted electromagnetic (EM) radiations. This harmful radiation creates not only malfunctioning of nearby electronic gadgets but also severely affects a human being. So, a suitable microwave absorbing material (MAM) becomes a necessary urge in the field of stealth and radar technology. Initially, Aluminum based hexa ferrite was prepared by sol-gel technique and for carbon derived composite was prepared by the simple one port chemical reduction method. Finally, composite films of Poly (Vinylidene) Fluoride (PVDF) are prepared by simple gel casting technique. Present work demands that aluminum-based hexaferrite phase conjugated with graphene in PVDF matrix becomes a suitable candidate both in commercially important X and Ku band. The structural and morphological nature was characterized by X-Ray diffraction (XRD), Field emission-scanning electron microscope (FESEM) and Raman spectra which conforms that 30-40 nm particles are well decorated over graphene sheet. Magnetic force microscopy (MFM) and conducting force microscopy (CFM) study further conforms the magnetic and conducting nature of composite. Finally, shielding effectiveness (SE) of the composite film was studied by using Vector network analyzer (VNA) both in X band and Ku band frequency range and found to be more than 30 dB and 40 dB, respectively. As prepared composite films are excellent microwave absorbers.Keywords: carbon nanocomposite, microwave absorbing material, electromagnetic shielding, hexaferrite
Procedia PDF Downloads 178943 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 184942 The Misuse of Social Media in Order to Exploit "Generation Y"; The Tactics of IS
Authors: Ali Riza Perçin, Eser Bingül
Abstract:
Internet technologies have created opportunities with which people share their ideologies, thoughts and products. This virtual world, named social media has given the chance of gathering individual users and people from the world's remote locations and establishing an interaction between them. However, to an increasingly higher degree terrorist organizations today use the internet and most notably social-network media to create the effects they desire through a series of on-line activities. These activities, designed to support their activities, include information collection (intelligence), target selection, propaganda, fundraising and recruitment to name a few. Meanwhile, these have been used as the most important tool for recruitment especially from the different region of the world, especially disenfranchised youth, in the West in order to mobilize support and recruit “foreign fighters.” The recruits have obtained the statue, which is not accessible in their society and have preferred the style of life that is offered by the terrorist organizations instead of their current life. Like other terrorist groups, for a while now the terrorist organization Islamic State (IS) in Iraq and Syria has employed a social-media strategy in order to advance their strategic objectives. At the moment, however, IS seems to be more successful in their on-line activities than other similar organizations. IS uses social media strategically as part of its armed activities and for the sustainability of their military presence in Syria and Iraq. In this context, “Generation Y”, which could exist at the critical position and undertake active role, has been examined. Additionally, the explained characteristics of “Generation Y” have been put forward and the duties of families and society have been stated as well.Keywords: social media, "generation Y", terrorist organization, islamic state IS
Procedia PDF Downloads 426941 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 166940 A Program Evaluation of TALMA Full-Year Fellowship Teacher Preparation
Authors: Emilee M. Cruz
Abstract:
Teachers take part in short-term teaching fellowships abroad, and their preparation before, during, and after the experience is critical to affecting teachers’ feelings of success in the international classroom. A program evaluation of the teacher preparation within TALMA: The Israel Program for Excellence in English (TALMA) full-year teaching fellowship was conducted. A questionnaire was developed that examined professional development, deliberate reflection, and cultural and language immersion offered before, during, and after the short-term experience. The evaluation also surveyed teachers’ feelings of preparedness for the Israeli classroom and any recommendations they had for future teacher preparation within the fellowship program. The review suggests the TALMA program includes integrated professional learning communities between fellows and Israeli co-teachers, more opportunities for immersive Hebrew language learning, a broader professional network with Israelis, and opportunities for guided discussion with the TALMA community continued participation in TALMA events and learning following the full-year fellowship. Similar short-term international programs should consider the findings in the design of their participation preparation programs. The review also offers direction for future program evaluation of short-term participant preparation, including the need for frequent response item updates to match current offerings and evaluation of participant feelings of preparedness before, during, and after the full-year fellowship.Keywords: educational program evaluation, international teaching, short-term teaching, teacher beliefs, teaching fellowship, teacher preparation
Procedia PDF Downloads 182939 SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy
Authors: Neda Seyyedi, Reza Berangi
Abstract:
Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism.Keywords: VOIP networks, flooding attacks, entropy, computer networks
Procedia PDF Downloads 405938 Internet of Things for Smart Dedicated Outdoor Air System in Buildings
Authors: Dararat Tongdee, Surapong Chirarattananon, Somchai Maneewan, Chantana Punlek
Abstract:
Recently, the Internet of Things (IoT) is the important technology that connects devices to the network and people can access real-time communication. This technology is used to report, collect, and analyze the big data for achieving a purpose. For a smart building, there are many IoT technologies that enable management and building operators to improve occupant thermal comfort, indoor air quality, and building energy efficiency. In this research, we propose monitoring and controlling performance of a smart dedicated outdoor air system (SDOAS) based on IoT platform. The SDOAS was specifically designed with the desiccant unit and thermoelectric module. The designed system was intended to monitor, notify, and control indoor environmental factors such as temperature, humidity, and carbon dioxide (CO₂) level. The SDOAS was tested under the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 62.2) and indoor air quality standard. The system will notify the user by Blynk notification when the status of the building is uncomfortable or tolerable limits are reached according to the conditions that were set. The user can then control the system via a Blynk application on a smartphone. The experimental result indicates that the temperature and humidity of indoor fresh air in the comfort zone are approximately 26 degree Celsius and 58% respectively. Furthermore, the CO₂ level was controlled lower than 1000 ppm by indoor air quality standard condition. Therefore, the proposed system can efficiently work and be easy to use for buildings.Keywords: internet of things, indoor air quality, smart dedicated outdoor air system, thermal comfort
Procedia PDF Downloads 199937 The Prevalence and Impact of Anxiety Among Medical Students in the MENA Region: A Systematic Review, Meta-Analysis, and Meta-Regression
Authors: Kawthar F. Albasri, Abdullah M. AlHudaithi, Dana B. AlTurairi, Abdullaziz S. AlQuraini, Adoub Y. AlDerazi, Reem A. Hubail, Haitham A. Jahrami
Abstract:
Several studies have found that medical students have a significant prevalence of anxiety. The purpose of this review paper is to carefully evaluate the current research on anxiety among medical students in the MENA region and, as a result, estimate the prevalence of these disturbances. Multiple databases, including the CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane Library, Embase, MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed, PsycINFO (Psychological Information Database), Scopus, Web of Science, UpToDate, ClinicalTrials.gov, WHO Global Health Library, EbscoHost, ProQuest, JAMA Network, and ScienceDirect, were searched. The retrieved article reference lists were rigorously searched and rated for quality. A random effects meta-analysis was performed to compute estimates. The current meta-analysis revealed an alarming estimated pooled prevalence of anxiety (K = 46, N = 27023) of 52.5% [95%CI: 43.3%–61.6%]. A total of 62.0% [95% CI 42.9%; 78.0%] of the students (K = 18, N = 16466) suffered from anxiety during the COVID-19 pandemic, while 52.5% [95% CI 43.3%; 61.6%] had anxiety before COVID-19. Based on the GAD-7 measure, a total of 55.7% [95%CI 30.5%; 78.3%] of the students (K = 10, N = 5830) had anxiety, and a total of 54.7% of the students (K = 18, N = 12154) [95%CI 42.8%; 66.0%] had anxiety using the DASS-21 or 42 measure. Anxiety is a common issue among medical students, making it a genuine problem. Further research should be conducted post-COVD 19, with a focus on anxiety prevention and intervention initiatives for medical students.Keywords: anxiety, medical students, MENA, meta-analysis, prevalence
Procedia PDF Downloads 73936 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India
Authors: Pardhasaradhi Gudla, Imanual A.
Abstract:
The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.Keywords: offshore wind power, optimized techniques, power system, sub sea cable
Procedia PDF Downloads 193935 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture
Authors: Sajjad Akbar, Rabia Bashir
Abstract:
With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.Keywords: agent based web content mining, content centric networking, information centric networking
Procedia PDF Downloads 475934 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 580933 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel
Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner
Abstract:
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization
Procedia PDF Downloads 528932 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction
Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li
Abstract:
Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable
Procedia PDF Downloads 77931 Linux Security Management: Research and Discussion on Problems Caused by Different Aspects
Authors: Ma Yuzhe, Burra Venkata Durga Kumar
Abstract:
The computer is a great invention. As people use computers more and more frequently, the demand for PCs is growing, and the performance of computer hardware is also rising to face more complex processing and operation. However, the operating system, which provides the soul for computers, has stopped developing at a stage. In the face of the high price of UNIX (Uniplexed Information and Computering System), batch after batch of personal computer owners can only give up. Disk Operating System is too simple and difficult to bring innovation into play, which is not a good choice. And MacOS is a special operating system for Apple computers, and it can not be widely used on personal computers. In this environment, Linux, based on the UNIX system, was born. Linux combines the advantages of the operating system and is composed of many microkernels, which is relatively powerful in the core architecture. Linux system supports all Internet protocols, so it has very good network functions. Linux supports multiple users. Each user has no influence on their own files. Linux can also multitask and run different programs independently at the same time. Linux is a completely open source operating system. Users can obtain and modify the source code for free. Because of these advantages of Linux, it has also attracted a large number of users and programmers. The Linux system is also constantly upgraded and improved. It has also issued many different versions, which are suitable for community use and commercial use. Linux system has good security because it relies on a file partition system. However, due to the constant updating of vulnerabilities and hazards, the using security of the operating system also needs to be paid more attention to. This article will focus on the analysis and discussion of Linux security issues.Keywords: Linux, operating system, system management, security
Procedia PDF Downloads 108930 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry
Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki
Abstract:
In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration
Procedia PDF Downloads 431929 Subway Stray Current Effects on Gas Pipelines in the City of Tehran
Authors: Mohammad Derakhshani, Saeed Reza Allahkarama, Michael Isakhani-Zakaria, Masoud Samadian, Hojjat Sharifi Rasaey
Abstract:
In order to investigate the effects of stray current from DC traction systems (subway) on cathodically protected gas pipelines, the subway and the gas network maps in the city of Tehran were superimposed and a comprehensive map was prepared. 213 intersections and about 100150 meters of parallel sections of gas pipelines were found with respect to the railway right of way which was specified for field measurements. The potential measurements data were logged for one hour in each test point. 24-hour potential monitoring was carried out in selected test points as well. Results showed that dynamic stray current from subway on pipeline potential appears as fluctuations in its static potential that is visible in the diagrams during night periods. These fluctuations can cause the pipeline potential to exit the safe zone and lead to corrosion or overprotection. In this study, a maximum potential shift of 100 mv in the pipe-to-soil potential was considered as a criterion for dynamic stray current effective presence. Results showed that a potential fluctuation range between 100 mV to 3 V exists in measured points on pipelines which exceeds the proposed criterion and needs to be investigated. Corrosion rates influenced by stray currents were calculated using coupons. Results showed that coupon linked to the pipeline in one of the locations at region 1 of the city of Tehran has a corrosion rate of 4.2 mpy (with cathodic protection and under influence of stray currents) which is about 1.5 times more than free corrosion rate of 2.6 mpy.Keywords: stray current, DC traction, subway, buried Pipelines, cathodic protection list
Procedia PDF Downloads 822928 Monitoring Synthesis of Biodiesel through Online Density Measurements
Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino
Abstract:
The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.Keywords: biodiesel, density measurements, online continuous monitoring, synthesis
Procedia PDF Downloads 575927 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator
Procedia PDF Downloads 95926 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 131925 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 63924 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data
Authors: Martin Pellon Consunji
Abstract:
Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms
Procedia PDF Downloads 123923 Global Historical Distribution Range of Brown Bear (Ursus Arctos)
Authors: Tariq Mahmood, Faiza Lehrasab, Faraz Akrim, Muhammad Sajid nadeem, Muhammad Mushtaq, Unza waqar, Ayesha Sheraz, Shaista Andleeb
Abstract:
Brown bear (Ursus arctos), a member of the family Ursidae, is distributed in a wide range of habitats in North America, Europe and Asia. Suspectedly, the global distribution range of brown bears is decreasing at the moment due to various factors. The carnivore species is categorized as ‘Least Concern’ globally by the IUCN Red List of Threatened Species. However, there are some fragmented, small populations that are on the verge of extinction, as is in Pakistan, where the species is listed as ‘Critically Endangered’, with a declining population trend. Importantly, the global historical distribution range of brown bears is undocumented. Therefore, in the current study, we reconstructed and estimated the historical distribution range of brown bears using QGIS software and also analyzed the network of protected areas in the past and current ranges of the species. Results showed that brown bear was more widely distributed in historic times, encompassing 52.6 million km² area as compared to their current distribution of 38.8 million km², resulting in a total range contraction of up to approximately 28 %. In the past, a total of N = 62,234 protected Areas, covering approximately 3.89 million km² were present in the distribution range of the species, while now a total of N= 33,313 Protected Areas, covering approximately 2.75 million km² area, are present in the current distribution range of the brown bear. The brown bear distribution range in the protected areas has also contracted by 1.15 million km² and the total percentage reduction of PAs is 29%.Keywords: brown bear, historic distribution, range contraction, protected areas
Procedia PDF Downloads 60922 Genetic Diversity and Variation of Nigerian Pigeon (Columba livia domestica) Populations Based on the Mitochondrial Coi Gene
Authors: Foluke E. Sola-Ojo, Ibraheem A. Abubakar, Semiu F. Bello, Isiaka H. Fatima, Sule Bisola, Adesina M. Olusegun, Adeniyi C. Adeola
Abstract:
The domesticated pigeon, Columba livia domestica, has many valuable characteristics, including high nutritional value and fast growth rate. There is a lack of information on its genetic diversity in Nigeria; thus, the genetic variability in mitochondrial cytochrome oxidase subunit I (COI) sequences of 150 domestic pigeons from four different locations was examined. Three haplotypes (HT) were identified in Nigerian populations; the most common haplotype, HT1, was shared with wild and domestic pigeons from Europe, America, and Asia, while HT2 and HT3 were unique to Nigeria. The overall haplotype diversity was 0.052± 0.025, and nucleotide diversity was 0.026± 0.068 across the four investigated populations. The phylogenetic tree showed significant clustering and genetic relationship of Nigerian domestic pigeons with other global pigeons. The median-joining network showed a star-like pattern suggesting population expansion. AMOVA results indicated that genetic variations in Nigerian pigeons mainly occurred within populations (99.93%), while the Neutrality tests results suggested that the Nigerian domestic pigeons’ population experienced recent expansion. This study showed a low genetic diversity and population differentiation among Nigerian domestic pigeons consistent with a relatively conservative COI sequence with few polymorphic sites. Furthermore, the COI gene could serve as a candidate molecular marker to investigate the genetic diversity and origin of pigeon species. The current data is insufficient for further conclusions; therefore, more research evidence from multiple molecular markers is required.Keywords: Nigeria pigeon, COI, genetic diversity, genetic variation, conservation
Procedia PDF Downloads 195921 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 10920 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 291