Search results for: numerical investigation
3433 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls
Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah
Abstract:
In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.Keywords: boundary layer profile, fire whirls, near-ground height, vortex interactions
Procedia PDF Downloads 1683432 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations
Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai
Abstract:
Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile
Procedia PDF Downloads 1463431 Development and Characterization of Double Liposomes Based Dual Drug Delivery System for H. Pylori Targeting
Authors: Ashish Kumar Jain, Deepak Mishra
Abstract:
The objective of the present investigation was to prepare and evaluate a vesicular dual drug delivery system for effective management of mucosal ulcer. Inner encapsulating and Double liposomes were prepared by glass bead and reverse phase evaporation method respectively. The formulation consisted of inner liposomes bearing Ranitidine Bismuth Citrate (RBC) and outer liposomes encapsulating Amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC viz 91.4±1.8% and 77.2±2.1% respectively at the end of 72 hr. Furthermore binding specificity and targeting propensity toward H. pylori (SKP-56) was confirmed by agglutination and in situ adherence assay. Reduction of the absolute alcohol induced ulcerogenic index from 3.01 ± 0.25 to 0.31 ± 0.09 and 100% H. pylori clearance rate was observed. These results suggested that double liposomes are potential vector for the development of dual drug delivery for effective treatment of H. pylori-associated peptic ulcer.Keywords: double liposomes, H. pylori targeting, PE liposomes, glass-beads method, peptic ulcers
Procedia PDF Downloads 4523430 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)
Authors: He Yuhai, Ahmad Ziad Bin Sulaiman
Abstract:
Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia
Procedia PDF Downloads 4203429 A Simple Computational Method for the Gravitational and Seismic Soil-Structure-Interaction between New and Existent Buildings Sites
Authors: Nicolae Daniel Stoica, Ion Mierlus Mazilu
Abstract:
This work is one of numerical research and aims to address the issue of the design of new buildings in a 3D location of existing buildings. In today's continuous development and congestion of urban centers is a big question about the influence of the new buildings on an already existent vicinity site. Thus, in this study, we tried to focus on how existent buildings may be affected by any newly constructed buildings and in how far this influence is really decreased. The problem of modeling the influence of interaction between buildings is not simple in any area in the world, and neither in Romania. Unfortunately, most often the designers not done calculations that can determine how close to reality these 3D influences nor the simplified method and the more superior methods. In the most literature making a "shield" (the pilots or molded walls) is absolutely sufficient to stop the influence between the buildings, and so often the soil under the structure is ignored in the calculation models. The main causes for which the soil is neglected in the analysis are related to the complexity modeling of interaction between soil and structure. In this paper, based on a new simple but efficient methodology we tried to determine for a lot of study cases the influence, in terms of assessing the interaction land structure on the behavior of structures that influence a new building on an existing one. The study covers additional subsidence that may occur during the execution of new works and after its completion. It also highlighted the efforts diagrams and deflections in the soil for both the original case and the final stage. This is necessary to see to what extent the expected impact of the new building on existing areas.Keywords: soil, structure, interaction, piles, earthquakes
Procedia PDF Downloads 2933428 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population
Authors: Firman Riyudha, Endrik Mifta Shaiful
Abstract:
The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.Keywords: drugs users, level education, mathematical model, stability
Procedia PDF Downloads 4813427 Structural Challenges, the Forgotten Elephant in the Quest of Access to Justice: The Case of the South African Labour and Labour Appeal Courts
Authors: Carlos Joel Tchawouo Mbiada
Abstract:
This paper intends to refrain from debating the different meanings of justice, such as its social or moral meaning, nor to discuss the different theories of justice. This paper focuses on the legal understanding of access to justice to mean access to the court. Using the Labour and Labour Appeal Courts as a case study, this paper investigates whether the composition of the bench, the personnel and state mechanisms to promote access to court offer ideal conditions to access to court. The investigation is benchmarked against the South African new constitutional order underpinned by the concept of social justice to eradicate past injustices. To provide justice to all, the Constitution of the Republic of South Africa 1996 guarantees the right to access to the court. The question that takes centre stage in this paper is whether litigants are denied the right to access the Labour and Labour Appeal Courts. The paper argues that factors such as the status of the Labour and Labour Appeal Courts, the number of judges, and the building structure prevent litigants from accessing these courts. The paper advocates for a legislative overhaul of the Labour and Labour Appeal Courts structure so that litigants may access the courts. Until such time, the paper argues that the right to access the Labour and Labour Appeal Courts would remain far from the reach of many litigants.Keywords: access to justice, access to court, labour court, labour appeal court
Procedia PDF Downloads 923426 Synthesis and Evaluation of Antioxidant Behavior of Some Indole-Based Melatonin Derivatives
Authors: Eddy Neuhaus, Hanif Shirinzadeh, Cigdem Karaaslan, Elif Ince, Hande Gurer-Orhan, Sibel Suzen
Abstract:
Reactive oxygen species (ROS) and oxidative stress can cause fatal damage to essential cell structures, including DNA. It is known that use of antioxidants could be advantageous in the prevention of various diseases such as cancer, cardiovascular diseases and neurodegenerative disorders. Since antioxidant properties of the indole ring-containing melatonin (MLT) has been described and evaluated, MLT-related compounds such as MLT metabolites and synthetic analogues are under investigation to determine which exhibit the highest activity with the lowest side-effects. Owing to indole and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of indole-7-carbaldehyde hydrazone derivatives were synthesized, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all indole-based MLT analogues was investigated both by lactate dehydrogenase leakage assay and by MTT assay. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Research and Development Grant 112S599.Keywords: melatonin, antioxidant activity, indole, hydrazone, oxidative stress
Procedia PDF Downloads 4863425 Solar Still Absorber Plate Modification and Exergy Analysis
Authors: Dudul Das, Pankaj Kalita, Sangeeta Borah
Abstract:
Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%.Keywords: fluoride, absorber plate, jute wick, instantaneous exergy
Procedia PDF Downloads 4653424 The Investigation of Green Building Certification on the Productivity and Mental and Physical Health of Building's Occupants in Tehran, Iran
Authors: Armin Samarghandi, Amirreza Jafari, Mohamad Ghiasi
Abstract:
Numerous assertions and some empirical evidence imply that 'green' buildings ought to be more productive and healthier (mentally and physiologically) than conventional structures. Since then, empirical data has been equivocal, indicating either that the studies are inaccurate or that the research has just scratched the surface of green buildings in offices, accommodation, and hospital settings and not taken the aforementioned holistically. This study compared four green-certified buildings -one residential green building, one green hospital, and one green school- with conventional structures in Tehran, Iran, by means of a questionnaire spread among those utilizing these buildings, and assessing their productivity and health rate as opposed to the time they resided, worked in conventional buildings. The results demonstrated higher scores pertaining to productivity and physical and mental wellness as a consequence of better indoor environmental quality (IEQ), natural lighting, design, and sustainability of these buildings against non-green buildings. In addition, ancillary matters -environmental, financial, intellectual, emotional, social, and spiritual dimensions of participants- were indirectly evaluated, and the same results were produced.Keywords: green building, LEED, productivity, physical and mental health, indoor environmental quality
Procedia PDF Downloads 1293423 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy
Abstract:
Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity
Procedia PDF Downloads 983422 DEM Simulation of the Formation of Seed Granules in Twin-Screw Granulation Process
Authors: Tony Bediako Arthur, Nejat Rahmanian, Nana Gyan Sekyi
Abstract:
The possibility of producing seeded granules from fine and course powders is a major challenge as the control parameters that affect its producibility is still under investigation. The seeded granulation is a novel form of producing granules where the granule is made up of larger particles at the core, which are surrounded by fine particles. The possibility of managing granulation through course particle feed rate control makes seeded granulation in continuous granulation useful in terms of process control. Twin screw granulation is now a major process of choice for the wet continuous granulation process in the industry. It is, therefore, imperative to investigate the process control parameters that influence the formation of seeded granules in twin screw granulation. In this paper, the effect of the twin screws rotating speed on the production of seeded granules has been examined. Pictorial and quantitative analysis indicates a high number of seeded granules forming at low screw rotating speeds. It is also instructive to say that higher tensile stress occurs at the kneading section of the screws; thus, higher rotating speed courses the fines for breaking off from the seed particle.Keywords: DEM, twin-screw, Seeded granules, Simulation
Procedia PDF Downloads 923421 Using Information and Communication Technologies in Teaching Translation: Students of English as a Case Study
Authors: Guessabi Fatiha
Abstract:
Nowadays, there is no sphere of human life that does not use Information and Communication Technologies (ICTs) in practice. This type of development grew widely in the last years of the 20th century and impacted many fields such as education, health, financing, job markets, communication, governments, industrial productivity, etc. Recently, in higher education, the use of ICTs has been essential and significant during the Covid19 pandemic. Thanks to technology, although the universities in Algeria were locked down during the period of covid19, learning was easily continued, and students were collaborating, communicating, socializing, and learning at a distance. Therefore, ICT tools are required in translation courses to enhance and improve translation teaching. This research explores the use of ICT in teaching and learning translation. The research comes along with a theoretical framework; the literature review is produced to highlight some essential ICT concepts and translation teaching. In order to achieve the study objective, a questionnaire is distributed to the third-year English LMD students at Tahri Mohamed University, and an interview is addressed to the translation teacher. The results and discussion obtained from this investigation confirmed the hypothesis and revealed that the use of ICT is essential in translation courses and it improves translation teaching. Hence, by using ICT in the classroom, the students become more active, and the teachers of translation become knowledge facilitators and leaders.Keywords: COVID19, ICT, learning, students, teaching, TMU, translation
Procedia PDF Downloads 1313420 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 4873419 Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel
Authors: J. Ptačinová, J. Ďurica, P. Jurči, M Kusý
Abstract:
Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak.Keywords: microstructure, Vanadis 6 tool steel, sub-zero treatment, carbides
Procedia PDF Downloads 1653418 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection
Authors: Mondher Yahyaoui
Abstract:
A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection
Procedia PDF Downloads 4413417 Phytochemical and Biological Study of Chrozophora oblongifolia
Authors: Al-Braa Kashegari, Ali M. El-Halawany, Akram A. Shalabi, Sabrin R. M. Ibrahim, Hossam M. Abdallah
Abstract:
Chemical investigation of Chrozophora oblongifolia resulted in the isolation of five major compounds that were identified as apeginin-7-O-glucoside (1), quercetin-3-O-glucuronic acid (2), quercetin-3-O-glacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The identity of isolated compounds was assessed by different spectroscopic methods, including one- and two-dimensional NMR. The isolated compounds were tested for their antioxidant activity using different assays viz., DPPH, FRAP, ABTS, ORAC, and metal chelation effects. In addition, the inhibition of target enzymes involved in the metabolic syndrome, such as alpha-glucosidase and pancreatic lipase, were carried out. Moreover, the effect of the compounds on the advanced glycation end-products (AGEs) as one of the major complications of oxidative stress and hyperglycemia in metabolic syndromes were carried out using BSA‐fructose (bovine serum albumin), BSA-methylglyoxal, and arginine methylglyoxal models. The pure isolates showed a protective effect in metabolic syndromes as well as promising antioxidant activity. The results showed potent activity of compound 5 in all measured parameters meanwhile, none of the tested compounds showed activity against pancreatic lipase.Keywords: Chrozophora oblongifolia, antioxidant, pancreatic lipase, metabolic syndromes
Procedia PDF Downloads 1143416 Assessing Remote and Hybrid Education Amidst the COVID-19 Pandemic: Insights and Innovations from Secondary School Educators
Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
The principal objective of this study is to undertake a comprehensive comparative analysis of distance learning and blended learning modalities, with a particular emphasis on evaluating their effectiveness during the confinement period mandated by the COVID-19 pandemic. This investigation is rooted in the firsthand experiences of educators at the high school and secondary levels within both private and public educational institutions. To acquire the requisite data, we meticulously designed and distributed a survey to these educators, soliciting detailed narratives of their professional experiences throughout this challenging period. The survey aims to elucidate the specific difficulties encountered by teachers, as well as to highlight the innovative pedagogical strategies they devised in response to these challenges. By synthesizing the insights garnered from this survey, our goal is to foster an exchange of experiences among educators and to generate informed recommendations that will inform future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation
Procedia PDF Downloads 373415 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor
Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly
Abstract:
In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.Keywords: nano iron, core-shell, reduction reaction, K-M reactor
Procedia PDF Downloads 3143414 A Progressive Techno-Legal Framework for Digital Evidence Management
Authors: Ayobami P. Olatunji, Saadat Ibiyeye, Abdulaziz Ibiyeye, Tahir M. Khan
Abstract:
Digital evidence has become a cornerstone in criminal investigations due to the vast amount of information available in digital form. Despite its prevalence, this evidence is often met with skepticism in court proceedings because of its inherently volatile nature. Traditional forensic processes, defined predominantly by technology experts, emphasize technical details in evidence collection while often neglecting legal procedures. This gap can pose significant challenges for legal practitioners in understanding and applying digital forensics. As digital evidence increasingly influences future cases, a cohesive framework integrating both technical and legal perspectives is essential. We propose a comprehensive techno-legal framework designed to bridge this gap. Our framework integrates key aspects of collection, preservation, examination, and documentation with legal components such as case building, certificate of compliance, cross-examination, and authorization. This balanced approach aims not to replace existing evidence presentation principles but to enhance the seamless integration of digital evidence into legal proceedings, addressing the common issues that lead to its dismissal.Keywords: evidence presentation, warrant, digital-forensic, certificate of compliance, legal procedures, computer crime, violation, investigation cybercrime
Procedia PDF Downloads 383413 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network
Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz
Abstract:
Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle
Procedia PDF Downloads 2413412 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite
Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh
Abstract:
In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear
Procedia PDF Downloads 5693411 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 773410 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method
Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski
Abstract:
The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening
Procedia PDF Downloads 4483409 Simulation of Improving the Efficiency of a Fire-Tube Steam Boiler
Authors: Roudane Mohamed
Abstract:
In this study we are interested in improving the efficiency of a steam boiler to 4.5T/h and minimize fume discharge temperature by the addition of a heat exchanger against the current in the energy system, the output of the boiler. The mathematical approach to the problem is based on the use of heat transfer by convection and conduction equations. These equations have been chosen because of their extensive use in a wide range of application. A software and developed for solving the equations governing these phenomena and the estimation of the thermal characteristics of boiler through the study of the thermal characteristics of the heat exchanger by both LMTD and NUT methods. Subsequently, an analysis of the thermal performance of the steam boiler by studying the influence of different operating parameters on heat flux densities, temperatures, exchanged power and performance was carried out. The study showed that the behavior of the boiler is largely influenced. In the first regime (P = 3.5 bar), the boiler efficiency has improved significantly from 93.03 to 99.43 at the rate of 6.47% and 4.5%. For maximum speed, the change is less important, it is of the order of 1.06%. The results obtained in this study of great interest to industrial utilities equipped with smoke tube boilers for the preheating air temperature intervene to calculate the actual temperature of the gas so the heat exchanged will be increased and minimize temperature smoke discharge. On the other hand, this work could be used as a model of computation in the design process.Keywords: numerical simulation, efficiency, fire tube, heat exchanger, convection and conduction
Procedia PDF Downloads 2203408 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study
Authors: Qudama Albu-Jasim, Majdi Kanaan
Abstract:
A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.Keywords: load rating, CSIBridge, strengthening, uncertainties, case study
Procedia PDF Downloads 2143407 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 2073406 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate
Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout
Abstract:
The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.Keywords: impinging jet, coherent structures, SPIV, aeroacoustics
Procedia PDF Downloads 843405 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry
Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş
Abstract:
Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.
Procedia PDF Downloads 2753404 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 149