Search results for: step load perturbations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5481

Search results for: step load perturbations

921 Determining Face-Validity for a Set of Preventable Drug-Related Morbidity Indicators Developed for Primary Healthcare in South Africa

Authors: D. Velayadum, P. Sthandiwe , N. Maharaj, T. Munien, S. Ndamase, G. Zulu, S. Xulu, F. Oosthuizen

Abstract:

Introduction and aims of the study: It is the responsibility of the pharmacist to manage drug-related problems in order to ensure the greatest benefit to the patient. In order to prevent drug-related morbidity, pharmacists should be aware of medicines that may contribute to certain drug-related problems due to their pharmacological action. In an attempt to assist healthcare practitioners to prevent drug-related morbidity (PDRM), indicators for prevention have been designed. There are currently no indicators available for primary health care in developing countries like South Africa, where the majority of the population access primary health care. There is, therefore, a need to develop such indicators, specifically with the aim of assisting healthcare practitioners in primary health care. Methods: A literature study was conducted to compile a comprehensive list of PDRM indicators as developed internationally using the search engines Google Scholar and PubMed. MESH term used to retrieve suitable articles was 'preventable drug-related morbidity indicators'. The comprehensive list of PDRM indicators obtained from the literature study was further evaluated for face validity. Face validity was done in duplicate by 2 sets of independent researchers to ensure 1) no duplication of indicators when compiling a single list, 2) inclusion of only medication available in primary healthcare, and 3) inclusion of medication currently available in South Africa. Results: The list of indicators, compiled from PDRM indicators in the USA, UK, Portugal, Australia, India, and Canada contained 324 PDRM. 184 of these indicators were found to be duplicates, and the duplications were omitted, leaving a final list of 140. The 140 PDRM indicators were evaluated for face-validity, and 97 were accepted as relevant to primary health care in South Africa. 43 indicators did not comply with the criteria and were omitted from the final list. Conclusion: This study is a first step in compiling a list of PDRM indicators for South Africa. It is important to take cognizance to the fact the health systems differ vastly internationally, and it is, therefore, important to develop country-specific indicators.

Keywords: drug-related morbidity, primary healthcare, South Africa, developing countries

Procedia PDF Downloads 138
920 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 321
919 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 379
918 Is HR in a State of Transition? An International Comparative Study on the Development of HR Competencies

Authors: Barbara Covarrubias Venegas, Sabine Groblschegg, Bernhard Klaus, Julia Domnanovich

Abstract:

Research Objectives: The roles and activities of human resource management (HRM) have changed a lot in the past years. Driven by a changing environment and therefore, new business requirements, the scope of human resource (HR) activities has widened. The extent to which these activities should focus on strategic issues to support the long-term success of a company has been discussed in science for many years. As many economies of Central and Eastern Europe (CEE) experienced a phase of transition after the socialist era and are now recovering from the 2008 global crisis it is needed to examine the current state of HR positioning. Furthermore, a trend in HR work developing from rather administrative units to being strategic partners of management can be noticed. This leads to the question of better understanding the underlying competencies which are necessary to support organisations. This topic was addressed by the international study “HR Competencies in international comparison”. The quantitative survey was conducted by the Institute for Human Resources & Organisation of FHWien University of Applied Science of WKW (A) in cooperation with partner universities in the countries Bosnia-Herzegovina, Croatia, Serbia and Slovenia. Methodology: Using the questionnaire developed by Dave Ulrich we tested whether the HR Competency model can be used for Austria, Bosnia and Herzegovina, Croatia, Serbia and Slovenia. After performing confirmatory and exploratory factor analysis for the whole data set containing all five countries we could clearly distinguish between four competencies. In a further step, our analysis focused on median and average comparisons between the HR competency dimensions. Conclusion: Our literature review, in alignment with other studies, shows a relatively rapid pace of development of HR Roles and HR Competencies in BCSS in the past decades. Comparing data from BCSS and Austria we still can notice that regards strategic orientation there is a lack in BCSS countries, thus competencies are not as developed as in Austria. This leads us to the tentative conclusion that HR has undergone a rapid change but is still in a State of Transition from being a rather administrative unit to performing the role of a strategic partner.

Keywords: comparative study, HR competencies, HRM, HR roles

Procedia PDF Downloads 297
917 Affective Transparency in Compound Word Processing

Authors: Jordan Gallant

Abstract:

In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.

Keywords: compound processing, semantic transparency, typed production, valence

Procedia PDF Downloads 112
916 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 242
915 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention

Procedia PDF Downloads 344
914 The Impact of Artificial Intelligence on Journalism and Mass Communication

Authors: Saad Zagloul Shokri Melika

Abstract:

The London College of Communication is one of the only universities in the world to offer a lifestyle journalism master’s degree. A hybrid originally constructed largely out of a generic journalism program crossed with numerous cultural studies approaches, the degree has developed into a leading lifestyle journalism education attracting students worldwide. This research project seeks to present a framework for structuring the degree as well as to understand how students in this emerging field of study value the program. While some researchers have addressed questions about journalism and higher education, none have looked specifically at the increasingly important genre of lifestyle journalism, which Folker Hanusch defines as including notions of consumerism and critique among other identifying traits. Lifestyle journalism, itself poorly researched by scholars, can relate to topics including travel, fitness, and entertainment, and as such, arguably a lifestyle journalism degree should prepare students to engage with these topics. This research uses the existing Masters of Arts and Lifestyle Journalism at the London College of Communications as a case study to examine the school’s approach. Furthering Hanusch’s original definition, this master’s program attempts to characterizes lifestyle journalism by a specific voice or approach, as reflected in the diversity of student’s final projects. This framework echoes the ethos and ideas of the university, which focuses on creativity, design, and experimentation. By analyzing the current degree as well as student feedback, this research aims to assist future educators in pursuing the often neglected field of lifestyle journalism. Through a discovery of the unique mix of practical coursework, theoretical lessons, and broad scope of student work presented in this degree program, researchers strive to develop a framework for lifestyle journalism education, referring to Mark Deuze’s ten questions for journalism education development. While Hanusch began the discussion to legitimize the study of lifestyle journalism, this project strives to go one step further and open up a discussion about teaching of lifestyle journalism at the university level.

Keywords: Journalism, accountability, education, television, publicdearth, investigative, journalism, Nigeria, journalismeducation, lifestyle, university

Procedia PDF Downloads 20
913 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 122
912 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers

Authors: Shreyas Srinivas Rangan, Jurgis Porins

Abstract:

The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.

Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers

Procedia PDF Downloads 51
911 Numerical Investigation of Indoor Environmental Quality in a Room Heated with Impinging Jet Ventilation

Authors: Mathias Cehlin, Arman Ameen, Ulf Larsson, Taghi Karimipanah

Abstract:

The indoor environmental quality (IEQ) is increasingly recognized as a significant factor influencing the overall level of building occupants’ health, comfort and productivity. An air-conditioning and ventilation system is normally used to create and maintain good thermal comfort and indoor air quality. Providing occupant thermal comfort and well-being with minimized use of energy is the main purpose of heating, ventilating and air conditioning system. Among different types of ventilation systems, the most widely known and used ventilation systems are mixing ventilation (MV) and displacement ventilation (DV). Impinging jet ventilation (IJV) is a promising ventilation strategy developed in the beginning of 2000s. IJV has the advantage of supplying air downwards close to the floor with high momentum and thereby delivering fresh air further out in the room compare to DV. Operating in cooling mode, IJV systems can have higher ventilation effectiveness and heat removal effectiveness compared to MV, and therefore a higher energy efficiency. However, how is the performance of IJV when operating in heating mode? This paper presents the function of IJV in a typical office room for winter conditions (heating mode). In this paper, a validated CFD model, which uses the v2-f model is used for the prediction of air flow pattern, thermal comfort and air change effectiveness. The office room under consideration has the dimensions 4.2×3.6×2.5m, which can be designed like a single-person or two-person office. A number of important factors influencing in the room with IJV are studied. The considered parameters are: heating demand, number of occupants and supplied air conditions. A total of 6 simulation cases are carried out to investigate the effects of the considered parameters. Heat load in the room is contributed by occupants, computer and lighting. The model consists of one external wall including a window. The interaction effects of heat sources, supply air flow and down draught from the window result in a complex flow phenomenon. Preliminary results indicate that IJV can be used for heating of a typical office room. The IEQ seems to be suitable in the occupied region for the studied cases.

Keywords: computation fluid dynamics, impinging jet ventilation, indoor environmental quality, ventilation strategy

Procedia PDF Downloads 163
910 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water

Authors: M. T. Amina, A. A. Alazba, U. Manzoor

Abstract:

Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.

Keywords: efficiency, microbial, SODIS, SOCODIS, weathers

Procedia PDF Downloads 250
909 The Effectiveness and the Factors Affect Farmer’s Adoption of Technological Innovation Citrus Gerga Lebong in Bengkulu Indonesia

Authors: Umi Pudji Astuti, Dedi Sugandi

Abstract:

The effectiveness of agricultural extension is determined by the component in the agricultural extension system among others are agricultural extension methods. Effective methods should be selected and defined based on the characteristics of the target, the resources, the materials, and the objectives to be achieved. Citrus agribusiness development in Lebong is certainly supported by the role of stakeholders and citrus farmers, as well as the proper dissemination methods. Adoption in the extension process substantially can be interpreted as the changes of behavior process such as knowledge (cognitive), attitudes (affective), and skill (psycho-motoric) in a person after receiving "innovation" from extension submitted by target communities. Knowledge and perception are needed as a first step in adopting a innovation, especially of citrus agribusiness development in Lebong. The process of Specific technology adoption is influenced by internal factors and farmer perceptions of technological innovation. Internal factors such as formal education, experience trying to farm, owned land, production farm goods. The output of this study: 1) to analyze the effectiveness of field trial methods in improving cognitive and affective farmers; 2) Knowing the relationship of adoption level and knowledge of farmers; 3) to analyze the factors that influence farmers' adoption of citrus technology innovation. The method of this study is through the survey to 40 respondents in Rimbo Pengadang Sub District, Lebong District in 2014. Analyzing data is done by descriptive and statistical parametric (multiple linear functions). The results showed that: 1) Field trip method is effective to improve the farmer knowledge (23,17% ) and positively affect the farmer attitude; 2) the knowledge level of PTKJS innovation farmers "positively and very closely related".; 3) the factors that influence the level of farmers' adoption are internal factors (education, knowledge, and the intensity of training), and external factors respondents (distance from the house to the garden and from the house to production facilities shop).

Keywords: affect, adoption technology, citrus gerga, effectiveness dissemination

Procedia PDF Downloads 173
908 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 45
907 Reducing the Stigma of Homelessness through Community Engagement and Reciprocity

Authors: Jessica Federman

Abstract:

The current research offers a longitudinal and qualitative study design to examine how reciprocity improves relations between the homeless and various stakeholders within a community. The study examines a homeless shelter that sought to establish a facility within a community of Los Angeles, that was initially met with strong resistance and opposition from a variety of organizations due to deeply entrenched views about the negative impact of having homeless individuals within the community. The project tested an intervention model that targets the reduction of stigmatization of homeless individuals and promotes synergistic exchanges between conflicted organizational entities in communities. Years later, the data show that there has been a remarkable reversal in the perception of the agency by the very forces that initially prevented it from being established. This reversal was achieved by a few key strategic decisions. Community engagement was the first step toward changing people’s minds and demonstrating how the homeless shelter was helping to alleviate the problem of homelessness instead of contributing to it. Central to the non-profit’s success was the agency’s pioneering formulation of a treatment model known as, Reciprocal Community Engagement Model (RCEM). The model works by reintegrating the homeless back into society through relationship building within a network of programs that foster positive human connections. This approach aims to draw the homeless out of the debilitating isolation of their situation, reintegrate them through purposeful roles in the community while simultaneously providing a reciprocal benefit to the community at large. Through multilevel, simultaneous social interaction, RCEM has a direct impact not only on the homeless shelter’s clients but also for the community as well. The agency’s approach of RCEM led to their homeless clients getting out of the shelter and getting to work in the community directly alongside other community volunteers and for the benefit of other city and community organizations. This led to several opportunities for community members and residents to interact in meaningful ways. Through each successive exposure, the resident and community members’ distrust in one another was gradually eased and a mutually supportive relationship restored. In this process, the community member becomes the locus of change as much as the residents of the shelter. Measurements of community trust and resilience increased while negative perceptions of homeless people decreased.

Keywords: stigma, homelessness, reciprocity, identity

Procedia PDF Downloads 155
906 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 154
905 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 412
904 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 354
903 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 320
902 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China

Authors: Chunyue Liu, Hongxing Jiang

Abstract:

Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.

Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane

Procedia PDF Downloads 243
901 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 109
900 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver

Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin

Abstract:

National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.

Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band

Procedia PDF Downloads 355
899 Psychological Factors of Readiness of Defectologists to Professional Development: On the Example of Choosing an Educational Environment

Authors: Inna V. Krotova

Abstract:

The study pays special attention to the definition of the psychological potential of a specialist-defectologist, which determines his desire to increase the level of his or her professional competence. The group included participants of the educational environment – an additional professional program 'Technologies of psychological and pedagogical assistance for children with complex developmental disabilities' implemented by the department of defectology and clinical psychology of the KFU jointly with the Support Fund for the Deafblind people 'Co-Unity'. The purpose of our study was to identify the psychological aspects of the readiness of the specialist-defectologist to his or her professional development. The study assessed the indicators of psychological preparedness, and its four components were taken into account: motivational, cognitive, emotional and volitional. We used valid and standardized tests during the study. As a result of the factor analysis of data received (from Extraction Method: Principal Component Analysis, Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 12 iterations), there were identified three factors with maximum factor load from 24 indices, and their correlation coefficients with other indicators were taken into account at the level of reliability p ≤ 0.001 and p ≤ 0.01. Thus the system making factor was determined – it’s a 'motivation to achieve success'; it formed a correlation galaxy with two other factors: 'general internality' and 'internality in the field of achievements', as well as with such psychological indicators as 'internality in the field of family relations', 'internality in the field of interpersonal relations 'and 'low self-control-high self-control' (the names of the scales used is the same as names in the analysis methods. In conclusion of the article, we present some proposals to take into account the psychological model of readiness of specialists-defectologists for their professional development, to stimulate the growth of their professional competence. The study has practical value for all providers of special education and organizations that have their own specialists-defectologists, teachers-defectologists, teachers for correctional and ergotherapeutic activities, specialists working in the field of correctional-pedagogical activity (speech therapists) to people with special needs who need true professional support.

Keywords: psychological readiness, defectologist, professional development, psychological factors, special education, professional competence, innovative educational environment

Procedia PDF Downloads 164
898 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota

Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos

Abstract:

The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.

Keywords: emissions, ethanol, gasoline, engine, performance

Procedia PDF Downloads 314
897 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches

Authors: S. Sandri, G. M. Contessa, C. Poggi

Abstract:

An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.

Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection

Procedia PDF Downloads 340
896 Study of the Design and Simulation Work for an Artificial Heart

Authors: Mohammed Eltayeb Salih Elamin

Abstract:

This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation.

Keywords: Artificial heart, computational fluid dynamic heart chamber, design, pump

Procedia PDF Downloads 448
895 Wax Patterns for Integrally Cast Rotors/Stators of Aeroengine Gas Turbines

Authors: Pradyumna R., Sridhar S., A. Satyanarayana, Alok S. Chauhan, Baig M. A. H.

Abstract:

Modern turbine engines for aerospace applications need precision investment cast components such as integrally cast rotors and stators, for their hot end turbine stages. Traditionally, these turbines are used as starter engines. In recent times, such engines are also used for strategic missile applications. The rotor/stator castings consist of a central hub (shrouded in some designs) over which a number of aerofoil shaped blades are located. Since these components cannot be machined, investment casting is the only available route for manufacture and hence stringent dimensional aerospace quality has to be in-built in the casting process itself. In the process of investment casting, pattern generation by injection of wax into dedicated dies/moulds is the first critical step. Traditional approach deals in producing individual blades with hub/shroud features through wax injection and assembly of a set of such injected patterns onto a dedicated and precisely manufactured fixture to wax-weld and generate an integral wax pattern, a process known as the ‘segmental approach’. It is possible to design a single-injection die with retractable metallic inserts in the case of untwisted blades of stator patterns without the shroud. Such an approach is also possible for twisted blades of rotors with highly complex design of inter-blade inserts and retraction mechanisms. DMRL has for long established methods and procedures for the above to successfully supply precision castings for various defence related projects. In recent times, urea based soluble insert approach has also been successfully applied to overcome the need to design and manufacture a precision assembly fixture, leading to substantial reduction in component development times. Present paper deals in length various approaches tried and established at DMRL to generate precision wax patterns for aerospace quality turbine rotors and stators. In addition to this, the importance of simulation in solving issues related to wax injection is also touched upon.

Keywords: die/mold and fixtures, integral rotor/stator, investment casting, wax patterns, simulation

Procedia PDF Downloads 331
894 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.

Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks

Procedia PDF Downloads 421
893 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation

Authors: Eda K. Murathan, Gulten Manioglu

Abstract:

In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.

Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio

Procedia PDF Downloads 162
892 Experiences of Social Participation among Community Elderly with Mild Cognitive Impairment: A Qualitative Research

Authors: Xue Li, Hui Xu

Abstract:

Mild cognitive impairment (MCI) is a clinical stage that occurs between normal aging and dementia. Although MCI increases the risk of developing dementia, individuals with MCI may maintain stable cognitive function and even recover to a typical cognitive state. An intervention to prevent or delay the progression to dementia in individuals with MCI may involve promoting social engagement. Social participation is the engagement in socially relevant social exchanges and meaningful activities. Older adults with MCI may encounter restricted cognitive abilities, mood changes, and behavioral difficulties during social participation, influencing their willingness to engage. Therefore, this study aims to employ qualitative research methods to gain an in-depth comprehension of the authentic social participation experiences of older adults with mild cognitive impairment, which will establish a foundation for designing appropriate intervention programs. A phenomenological research was conducted. The study participants were selected using the purposive sampling method in combination with the maximum differentiation sampling strategy. Face-to-face semistructured interviews were conducted among 12 elderly individuals suffering from mild cognitive impairment in a community in Zhengzhou City from May to July 2023. Colaizzi 7-step method was used to analyze the data and extract the theme. The real experience of social participation in older adults with mild cognitive impairment can be summarized into 3 themes: (1) a single social relationship but a strong desire to participate, (2) a dual experience of social participation with both positive and negative aspects, (3) multiple barriers to social participation, including impaired memory capacity, heavy family responsibilities and lack of infrastructure. The study found that elderly individuals with mild cognitive impairment and one social interaction display an increased desire to engage in society. To improve social participation levels and reduce cognitive function decline, healthcare providers should work with relevant government agencies and the community to create a comprehensive social participation system. It is important for healthcare providers to note the social participation status of the elderly with mild cognitive impairment.

Keywords: mild cognitive impairment, the elderly, social participation, qualitative research

Procedia PDF Downloads 74