Search results for: pressure gain combustion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6212

Search results for: pressure gain combustion

1652 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls

Authors: M. Bolacali

Abstract:

The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.

Keywords: anti-GnRF, fattening, growth, immunocastration

Procedia PDF Downloads 177
1651 Ground-Structure Interaction Analysis of Aged Tunnels

Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo

Abstract:

Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.

Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels

Procedia PDF Downloads 149
1650 Growing Evaluation Process in Chamaedorea Linearis with Humus from Biosolids of the Wastewater Treatment Plant, Nueva Granada Military University Cajica

Authors: J. Gonzalez, P. Jimenez, C. Isaza

Abstract:

Palms have different characteristics that make them vulnerable; that is the case of the Chamaedorea linearis, with the presence of solitary stems of small diameter and medium leaves, culturally harvested, and in religious festivities used. Additionally, they present a weak apical meristem as the only emergency point, slow development and growth, and an affectation due to the high rate of deforestation in Colombia. Propagation of this species can improve the pressure on wild populations and help their survival in the environment. In this study was used in 177 plants biosolids humus from the Wastewater Treatment Plant (WWTP), located at the UMNG Campus Cajica (Cundinamarca, Colombia). The experiment used a control and two treatments with 10% and 20% of humus. During the process, the variables evaluated were number of leaves, percentage of chlorophyll, stem length, and estimated leaf area. The data set were taking during 14 weeks before the reproductive maturity, evidencing that the most representative development of the palms was in the treatment of 20%, plants in this treatment presented major number of leaves, larger stems, a high quantity of chlorophyll, and was a first treatment that present pinnate leaves them represent an important point in maturity process. The research gives an opportunity to improve times of growth in another species of palms and plants (Product result from INV ING 2986 UMNG).

Keywords: biosolids, humus, growth, palms, wastewater treatment plant, WWTP

Procedia PDF Downloads 109
1649 Power Transformers Insulation Material Investigations: Partial Discharge

Authors: Jalal M. Abdallah

Abstract:

There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.

Keywords: transformers, insulation materials, voids, partial discharge

Procedia PDF Downloads 300
1648 Jurisdiction of Military Court for Military Members Who Committed General Crimes in Indonesia's Military Justice System and Comparison with Another Countries

Authors: Dini Dewi Heniarti

Abstract:

Military Court which is a judicial institution within the military institution has a heavy duty. Military court has to ensuring a fair legal process for military personnel (due process of law) and enforces military discipline. Military justice must also ensure protects the rights of military personnel. In Indonesia tren of military court changes in vision. The debate is happened on the jurisdiction of military court that allegedly has the potential existence of impunity. The Decree of People’s Consultative Assembly Number VII/MPR/2000 which states that the army general who committed the crime should not be tried in military court is one that underlies the proposed amendment limits the jurisdiction of military court. For the identify of the background in a specific format that is limited to juridical review. The goals this research is to gain knowledge, deep understanding and the concept of jurisdiction of military courts for military members who committed general crimes in adjudication procedure from the perspective of legal reform as alternative to establish independency of military judiciary. This research using Rule of Law as Grand Theory, Development Legal Theory as a Middle Theory and Criminal Justice System and concept of jurisdiction as supporting as Applied Theory. This study using a normative juridical approach, and equipped by primary data juridical approach of historical and comparative approach. The author uses descriptive analytical specifications. The main data used in this research is secondary data, which includes primary legal materials, secondary legal material and legal materials tertiary. Analysis primary data and qualitative data is done legally. Technique checking the validity of the data in this study used multiple methods with the research triangulation. This paper will demonstrate the problems concerning the jurisdiction of military courts for military personnel who committed general crimes in perspective of military justice reform Indonesia and adjudication procedures for military member who committed general crimes in the military justice system in Indonesia, as alternative to establish independency of judiciary in military justice in Indonesia. Comparative approached the military justice system from another countries is aimed to development military justice in Indonesia.

Keywords: jurisdiction, military courts, military justice, independency of judiciary

Procedia PDF Downloads 560
1647 Building Cardiovascular Fitness through Plyometric Training

Authors: Theresa N. Uzor

Abstract:

The word cardiovascular fitness is a topic of much interest to people of Nigeria, especially during this time, some heart diseases run in families. Cardiovascular fitness is the ability of the heart and lungs to supply-rich blood to the working muscle tissues. This type of fitness is a health-related component of physical fitness that is brought about by sustained physical activity such as plyometric training. Plyometric is a form of advanced fitness training that uses fast muscular contractions to improve power and speed in the sports performance by coaches and athletes. Plyometric training involves a rapid stretching of muscle (eccentric phase) immediately followed by a concentric or shortening action of the same muscle and connective tissue. However, the most basic example of true plyometric training is running and can be safe for a wide variety of populations. This paper focused on building cardiovascular health through Plyometric Training. The centre focus of the article is cardiovascular fitness and plyometric training with factors of cardiovascular fitness. Plyometric training at any age provides multiple benefits even beyond weight control and weight loss, decrease the risk of cardiovascular diseases, stroke, high blood pressure, diabetes, and other diseases, among other benefits of plyometric training to cardiovascular fitness. Participation in plyometric training will increase metabolism of an individual, thereby burning more calories even when at rest and reduces weight is also among the benefits of plyometric training. Some guidelines were recommended for planning plyometric training programme to minimise the chance of injury. With plyometric training in Nigeria, fortune can change for good, especially now that there has been an increase in cardiovascular diseases within the society for great savings would be saved.

Keywords: aerobic, cardiovascular, concentric, stretch-shortening cycle, plyometric

Procedia PDF Downloads 125
1646 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 184
1645 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 341
1644 Studies on Performance of an Airfoil and Its Simulation

Authors: Rajendra Roul

Abstract:

The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.

Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer

Procedia PDF Downloads 401
1643 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 296
1642 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 386
1641 Effect of Oral Immonoglobulin (IgY) Ingestion on Post Exercise Muscle Soreness and Muscle Damage Markers in Females

Authors: Bert H. Jacobson, Taylor Monaghan, John Sellers

Abstract:

Intense resistance-type activity generally elicits delayed onset muscle soreness (DOMS) in individuals unaccustomed to such action. DOMS is a combination of contractile tissue microtrauma, osmotic pressure changes, alteration calcium regulation, and inflammation. Elevated muscle-specific enzyme creatine kinase (CK) is a marker of striated muscle damage. Avian immunoglobulin (IgY) mediates inflammation and may thereby reduce post-exercise DOMS. Purpose: The aim of this study was to compare the effect of oral IgY and placebo (Pl) on CK, serum relevels, and perceived pain following induced DOMS. Methods: Healthy college-aged females (N=16) were randomly divided into an experimental group (IgY) and a control group (PL). CK serum levels were recorded followed by 14 days of supplementation of either IgY or Pl at the following doses: days 1-2 =4.5 g, days 3-5 =9.0 g, and days 6-14 =13.5 g. Following the 14 d, lower limb DOMS was induced using two methods of resistance training. After 48 hours, subjects reported for a second blood draw. Results: One-way ANOVA resulted in the IgY group posting significantly less (p < 0.05) serum CK than the PL group. Furthermore, the IgY group experienced significantly less post-test perceived soreness than the Pl group. Conclusion: IgY supplementation lessens muscle CK levels and perceived muscle soreness following exercise, possibly due to an anti-inflammatory effect. It was suggested that IgY may serve as a buffer for DOMS thereby allowing the participant to continue vigorous exercise without discomfort.

Keywords: muscle, soreness, damage, serum

Procedia PDF Downloads 186
1640 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 143
1639 Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod

Authors: Renata Josipovic, Ante Cvitkovic

Abstract:

Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health.

Keywords: emergency interventions, human health, hydrogen sulfide, particulate matter

Procedia PDF Downloads 151
1638 Prevalence of Selected Cardiovascular Risk Factors Obesity among University of Venda Staff

Authors: Avhasei Dorothy Rasifudi, Josephine Mandizha

Abstract:

Cardiovascular risk factors continue to be the leading cause of death in the majority of developed and developing countries. In 2011, the World Health Organization reported that every year an estimated 17 million people globally die of CVD, representing 30% of all global deaths, particularly caused by heart attacks and strokes. The purpose of the study was to determine and describe the prevalence of selected cardiovascular risk factors among university of Venda staff. A cross-sectional study was conducted among 100 staff aged 20-65 years. The anthropometric measurements were conducted in accordance to and with standardized procedures advocated by the International Society for the Advanced Kinanthropometry. Weight, Height, waist circumference and hip circumference were measured for calculation of body mass index and waist-hip ratio. Blood pressure was measured using a Heine cuff and sphygmomanometer. Questionnaire was administered to gather demographic details and cardiovascular risk factors of hypertension and obesity. Data were analyzed using mean and standard deviation. The parameter t-test was applied to test significance level at p ≤ 0.05 between sexes. The statistical significance was set at p ≤ 0.05. The prevalence of hypertension was 23% with the highest prevalence amongst those aged 40 years and above. Factors found to be to be significantly associated with hypertension were gender, age, physical inactivity and family history. Prevalence of obesity was 43%, with the highest prevalence among those aged 40 years. The factors associated with obesity were diet, age and physical activity. The prevalence of hypertension and obesity in the study were high.

Keywords: cardiovascular, prevalence, risk factors, staff

Procedia PDF Downloads 278
1637 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics

Procedia PDF Downloads 152
1636 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 319
1635 Merits and Demerits of Participation of Fellow Examinee as Subjects in Observed Structured Practical Examination in Physiology

Authors: Mohammad U. A. Khan, Md. D. Hossain

Abstract:

Background: Department of Physiology finds difficulty in managing ‘subjects’ in practical procedure. To avoid this difficulty fellow examinees of other group may be used as subjects. Objective: To find out the merits and demerits of using fellow examinees as subjects in the practical procedure. Method: This cross-sectional descriptive study was conducted in the Department of Physiology, Noakhali Medical College, Bangladesh during May-June’14. Forty-two 1st year undergraduate medical students from a selected public medical college of Bangladesh were enrolled for the study purposively. Consent of students and authority was taken. Eighteen of them were selected as subjects and designated as subject-examinees. Other fellow examinees (non-subject) examined their blood pressure and pulse as part of ‘observed structured practical examination’ (OSPE). The opinion of all examinees regarding the merits and demerits of using fellow examinee as subjects in the practical procedure was recorded. Result: Examinees stated that they could perform their practical procedure without nervousness (24/42, 57.14%), accurately and comfortably (14/42, 33.33%) and subjects were made available without wasting time (2/42, 4.76%). Nineteen students (45.24%) found no disadvantage and 2 (4.76%) felt embracing when the subject was of opposite sex. The subject-examinees narrated that they could learn from the errors done by their fellow examinee (11/18, 61.1%). 75% non-subject examinees expressed their willingness to be subject so that they can learn from their fellows’ error. Conclusion: Using fellow examinees as subjects is beneficial for both the non-subject and subject examinees. Funding sources: Navana, Beximco, Unihealth, Square & Acme Pharma, Bangladesh Ltd.

Keywords: physiology, teaching, practical, OSPE

Procedia PDF Downloads 139
1634 Impact Of Anthropogenic Pressures On The Water Quality Of Hammams In The Municipality Of Dar Bouazza, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui

Abstract:

Public baths or hammams play an essential role in the Moroccan urban and peri-urban fabric, constituting part of the cultural heritage. Urbanization in Morocco has led to a significant increase in the number of these traditional hammams: between 6,000 and 15,000 units (to be updated) operate with a traditional heating system. Numerous studies on energy consumption indicate that a hammam consumes between 60 and 120m3 of water and one to two tons of wood per day. On average, one ton of wood costs 650 Moroccan dirhams (approximately 60 Euros), resulting in a daily fuel cost of around 1300 Moroccan dirhams (about 120 Euros). These high consumptions result in significant environmental nuisances generated by: Wastewater: in the case of hammams located on the outskirts of Casablanca, such as our study area, the Municipality of Dar Bouazza, most of these waters are directly discharged into the receiving environment without prior treatment because they are not connected to the sanitation network. Emissions of black smoke and ashes produced by the often incomplete combustion of wood. Reducing the liquid and gas emissions generated by these hammams thus poses an environmental and sustainable development challenge that needs to be addressed. In this context, we initiated the Eco-hammam project with the objective of implementing innovative and locally adapted solutions to limit the negative impacts of hammams on the environment and reduce water and wood energy consumption. This involves treating and reusing wastewater through a compact system with heat recovery and using alternative energy sources to increase and enhance the energy efficiency of these traditional hammams. To achieve this, on-site surveys of hammams in the Dar Bouazza Municipality and the application of statistical approaches to the results of the physico-chemical and bacteriological characterization of incoming and outgoing water from these units were conducted. This allowed us to establish an environmental diagnosis of these entities. In conclusion, the analysis of well water used by Dar Bouazza's hammams revealed the presence of certain parameters that could be hazardous to public health, such as total germs, total coliforms, sulfite-reducing spores, chromium, nickel, and nitrates. Therefore, this work primarily focuses on prospecting upstream of our study area to verify if other sources of pollution influence the quality of well water.

Keywords: public baths, hammams, cultural heritage, urbanization, water consumption, wood consumption, environmental nuisances, wastewater, environmental challenge, sustainable development, Eco-hammam project, innovative solutions, local adaptation, negative impacts, water conservation, wastewater treatment, heat recovery, alternative energy sources, on-site surveys, Dar Bouazza Municipality, statistical approaches, physico-chemical characterization, bacteriological characterization, environmental diagnosis, well water analysis, public health, pollution sources, well water quality

Procedia PDF Downloads 57
1633 Effect of Brewing on the Bioactive Compounds of Coffee

Authors: Ceyda Dadali, Yeşim Elmaci

Abstract:

Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.

Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing

Procedia PDF Downloads 186
1632 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 466
1631 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, Biomedical application, Mechanical properties, Powder Metallurgy, Zinc

Procedia PDF Downloads 129
1630 Retrospective Insight on the Changing Status of the Romanian Language Spoken in the Republic of Moldova

Authors: Gina Aurora Necula

Abstract:

From its transformation into a taboo and its hiding under the so-called “Moldovan language” or under the euphemistic expression “state language” to its regained status recognition as an official language, the Romanian language spoken in the Republic of Moldova has undergone impressive reforms in the last 60 years. Meant to erase the awareness of citizens’ ethnic identity and turn a majority language into a minority one, all the laws and regulations issued on the field succeeded into setting numerous barriers for speakers of Romanian. Either manifested as social constraints or materialized into assumed rejection of mother tongue usage, all these laws have demonstrated their usefulness and major impact on the Romanian-speaking population. This article is the result of our research carried out over 10 years with the support of students, and Moldovan citizens, from the master's degree program "Romanian language - identity and cultural awareness." We present here a retrospective insight of the reforms, laws, and regulations that contributed to the shifted status of the Romanian language from the official language, seen as the language of common use both in the public and private spheres, in the minority language that surrendered its privileged place to the Russian language, firstly in the public sphere, and then, slowly but surely, in the private sphere. Our main goal here is to identify and make speakers understand what the barriers to learning Romanian language are nowadays when the social pressure on using Russian no longer exists.

Keywords: linguistic barriers, lingua franca, private sphere, public sphere, reformation

Procedia PDF Downloads 100
1629 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 350
1628 Synthesis of Plant-Mediated Silver Nanoparticles Using Erythrina indica Extract and Evaluation of Their Anti-Microbial Activities

Authors: Chandra Sekhar Singh, P. Chakrapani, B. Arun Jyothi, A. Roja Rani

Abstract:

The green synthesis of metallic nanoparticles (NPs) involves biocompatible ingredients under physiological conditions of temperature and pressure. Moreover, the biologically active molecules involved in the green synthesis of NPs act as functionalizing ligands, making these NPs more suitable for biomedical applications. Among the most important bioreductants are plant extracts, which are relatively easy to handle, readily available, low cost, and have been well explored for the green synthesis of other nanomaterials. Various types of metallic NPs have already been synthesized using plant extracts. They have wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In our study, we were described a cost effective and environment friendly technique for green synthesis of silver nanoparticles from 1mM AgNO3 solution through the aqueous extract of Erythrina indica as reducing as well as capping agent. Nanoparticles were characterized using UV–Vis absorption spectroscopy, FTIR, XRD, X-ray diffraction, SEM and TEM analysis showed the average particle size of 30 nm as well as revealed their spherical structure. Further these biologically synthesized nanoparticles were found to be highly toxic against different human pathogens viz. two Gram positive namely Klebsiella pneumonia and Bacillus subtilis bacteria and two were Gram negative bacteria namely Staphylococcus aureus and Escherichia coli (E. coli). This is for the first time reporting that Erythrina indica plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, antibacterial activity, FTIR, TEM, SEM

Procedia PDF Downloads 486
1627 Growth Performance,haematological And Serum Biochemistry Of Broilers Fed Graded Levels Of Cocoyam (Xanthosoma Sagittifolium)

Authors: Urom Scholastica Mgbo, Ifeanyichukwu, Vivian, Anaba, Uchemadu Martins, Arusiaba, Nelson Chijioke

Abstract:

The study was investigated to determine the growth performance , haematological and serum biochemistry of broiler fed graded levels of cocoyam (Xanthosoma sagittifolium). One hundred and twenty (120) day old broiler chicks of Anak strain were used for the study. The birds were randomly divided into 4 treatment groups of 30 birds per group, and each group was further divided into 3 replicates of 10 birds per replicate in group. Cooked cocoyam was used to formulate diets at inclusion levels of 0.00% for T1 (control), while T2, T3 and T4 contained 10.00%, 20.00% and 30.00% inclusion of cocoyam in partial replacement of maize in a Completely Randomized Design (CRD). At the end of the research, the haematological indices of broiler showed that packed cell volume (PCV) of birds fed diets 1(42.26%) and 3 (42.42%) were significantly (p<0.05) higher than birds fed diets 2 (39.72%) and 4 (38.78%).The Haemoglobin (Hb) of birds fed diets 3 (12.58g/dl) and 4 (12.26g/dl) were significantly (p<0.05) higher than birds fed diets 1 (11.60g/dl) and 2 (11.42g/dl). The values of the white blood cell (WBC) of the broiler chickens placed on cocoyam diet increased significantly (P<0.05) compared with the values obtained in the control (T1) . The serum protein value for birds fed diet I (5.45g/dl) were statistically (P>0.05) similar to those fed diets 2 (5.10g/dl) and 3 (5.38g/dl) but differ significantly (P<0.05) from diet 4 (4.97g/dl) which had the least protein value. Final weight of the birds showed that diet 4 (2370.85g) had the highest (P<0.05) value which was followed closely by diet 3 (2225.55g), while birds fed diets 1 (2165.70g) and diet 2 (2145.00g) recorded the least values Similar pattern was observed in the weight gain of the birds. Birds fed diet 4 (2270.30g) had higher (P<0.05) value, followed by birds on diet 3 (2125.45g), while birds fed diet 1 (2065.15g) and 2 (2044.90g) had the least values.. This study showed that birds fed diet 3 (50.60g) and diet 4 (54.05g) gave significantly (P<0.05) higher weight than the control diet (49.17g). There was significant (P<0.05) difference among the treatments for feed conversion ratio (FCR), were birds fed diet 4 (1.74) performed better, having the least feed conversion ratio. Economics of broiler chickens showed that Cost/kg of feed favored diet 4 (₦158.65) followed by diets 3 (₦165.95), 2 (₦178.52) and control diet 1 (₦197.14). From the result, the higher weight recorded in T4 4 showed that cocoyam meal can successfully replace maize up to 30% in the diet of broiler chickens. The low cost recorded in cocoyam based diets showed that the diets were more economical and beneficial compared to control diet 1. Therefore, feeding diet 4 (30%) cocoyam meal as replacement of maize in broiler chickens is recommended.

Keywords: cocoyam, growth, heamatology, serum biochemistry

Procedia PDF Downloads 98
1626 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 130
1625 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy

Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez

Abstract:

Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.

Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness

Procedia PDF Downloads 193
1624 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report

Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca

Abstract:

Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.

Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb

Procedia PDF Downloads 67
1623 Implementing Effective Strategies to Improve Teaching and Learning in Higher Education: Balancing the Engagement Acts between Lecturers And Students

Authors: Jeffrey Siphiwe Mkhize

Abstract:

Twelve years of schooling for most South African children, particularly those children from disadvantaged past, are confronted with numerous and diverse challenges. These challenges range from infrastructural limitations, language of teaching, poor resources and varying family backgrounds. Likewise, schools are categorized to signify schools’ geographic location, poverty lines, societal class and type of students that the school are likely to enroll. Such categorization perpetuates particular lines of identities that are indirectly reinforced by the same system that seeks to redress. South African universities prefer point systems to determine students’ suitability to gain access to their programmes. Once students are admitted based on the qualifying points there is an assumed equity in the manner in which they receive tuition. They are assumed as equal; noting the widened access to South African universities as means to redress past inequalities. Given the challenges, inequalities, it is necessary to view higher education as a site for knowledge construction that is accessible to all students. Epistemological access is key to all students irrespective of their socio-economic status. This paper seeks to contribute to the discourse of student engagement using lecturer-student relationship as a lens to understand this phenomenon. Data were generated using South African Survey of Student Engagement, focus group interviews, semi-structured one-on-one-interviews as well as document analysis. The focus was on students registered for the first year of a Bachelor of Education degree as well as lecturers that teach high risk modules in this qualification at the same level. The findings suggest that lecturers are challenged by overcrowded classrooms and over-enrolled modules; this challenge hampers their good intentions to become more efficient and innovative in their teaching. Students lack confidence in approaching lecturers for assistance. Collaborative learning has stronger results and students believe in self-support to deal with their challenges based on their individual strengths. Collaborative learning is key to student academic performance.

Keywords: collaborative learning, consultations, student engagement, student performance

Procedia PDF Downloads 98