Search results for: leadership models
3122 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 233121 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets
Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid
Abstract:
This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.
Procedia PDF Downloads 4523120 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study
Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem
Abstract:
A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement
Procedia PDF Downloads 3503119 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems
Authors: L. Wilkening, G. Ackermann, T. T. Do
Abstract:
This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.Keywords: battery, e-mobility, photovoltaic, smart grid
Procedia PDF Downloads 1433118 Fabrication of a Continuous Flow System for Biofilm Studies
Authors: Mohammed Jibrin Ndejiko
Abstract:
Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply.Keywords: biofilm, flowcell, stainless steel, coupon
Procedia PDF Downloads 3203117 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 673116 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics
Authors: H. Loumi-Fergane, A. Belaidi
Abstract:
The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used. In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics
Procedia PDF Downloads 2083115 The Conflict between Empowerment and Exploitation: The Hypersexualization of Women in the Media
Authors: Seung Won Park
Abstract:
Pornographic images are becoming increasingly normalized as innovations in media technology arise, the porn industry explosively grows, and transnational capitalism spreads due to government deregulation and privatization of media. As the media evolves, pornography has become more and more violent and non-consensual; this growth of ‘raunch culture’ reifies the traditional power balance between men and women in which men are dominant, and women are submissive. This male domination objectifies and commodifies women, reducing them to merely sexual objects for the gratification of men. Women are exposed to pornographic images at younger and younger ages, providing unhealthy sexual role models and teaching them lessons on sexual behavior before the onset of puberty. The increasingly sexualized depiction of women in particular positions them as appropriately desirable and available to men. As a result, women are not only viewed as sexual prey but also end up treating themselves primarily as sexual objects, basing their worth off of their sexuality alone. Although many scholars are aware of and have written on the great lack of agency exercised by women in these representations, the general public tends to view some of these women as being empowered, rather than exploited. Scholarly discourse is constrained by the popular misconception that the construction of women’s sexuality in the media is controlled by women themselves.Keywords: construction of gender, hypersexualization, media, objectification
Procedia PDF Downloads 2993114 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 323113 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: decision making, human capital analytics, talent management, talent value chain
Procedia PDF Downloads 1903112 Urban Transport System Resilience Guidelines
Authors: Evangelia Gaitanidou, Evangelos Bekiaris
Abstract:
Considering that resilience implies the ability of a system to adapt continuously in order to respond to its operational goals, a system is considered as more or less resilient depending on the level and time of recovering from disruptive events and/or shocks to its initial state. Regarding transport systems, enhancing resilience is considered imperative for two main reasons: Such systems provide critical support to every socio-economic activity, while being one of the most important economic sectors and, secondly, the paths that convey people, goods and information, are the same through which risks are propagated. RESOLUTE (RESilience management guidelines and Operationalization appLied to Urban Transport Environment) Horizon 2020 research project is answering those needs, by proposing and testing a set of guidelines for resilience management of the urban transport system. The methods and steps towards this goal, through a step-wise methodology, taking into account established models like FRAM (Functional Resonance Analysis Model), and upon gathering existing practices are described in this paper, together with an overview of the produced guidelines. The overall aim is to create a framework which public transport authorities could consult and apply, for rendering their infrastructure resilient against natural disaster and other threats.Keywords: guidelines, infrastructure, resilience, transport
Procedia PDF Downloads 2503111 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history
Procedia PDF Downloads 1853110 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.Keywords: absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation
Procedia PDF Downloads 1873109 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure
Authors: Sara Saboonian, Pierre Filion
Abstract:
The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.Keywords: ecosystem services, green infrastructure, intensification, planning
Procedia PDF Downloads 3583108 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor
Authors: Ashwani Kumar
Abstract:
Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity
Procedia PDF Downloads 593107 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation
Authors: Yanpei Zhen
Abstract:
The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables
Procedia PDF Downloads 1843106 Evaluation Methods for Question Decomposition Formalism
Authors: Aviv Yaniv, Ron Ben Arosh, Nadav Gasner, Michael Konviser, Arbel Yaniv
Abstract:
This paper introduces two methods for the evaluation of Question Decomposition Meaning Representation (QDMR) as predicted by sequence-to-sequence model and COPYNET parser for natural language questions processing, motivated by the fact that previous evaluation metrics used for this task do not take into account some characteristics of the representation, such as partial ordering structure. To this end, several heuristics to extract such partial dependencies are formulated, followed by the hereby proposed evaluation methods denoted as Proportional Graph Matcher (PGM) and Conversion to Normal String Representation (Nor-Str), designed to better capture the accuracy level of QDMR predictions. Experiments are conducted to demonstrate the efficacy of the proposed evaluation methods and show the added value suggested by one of them- the Nor-Str, for better distinguishing between high and low-quality QDMR when predicted by models such as COPYNET. This work represents an important step forward in the development of better evaluation methods for QDMR predictions, which will be critical for improving the accuracy and reliability of natural language question-answering systems.Keywords: NLP, question answering, question decomposition meaning representation, QDMR evaluation metrics
Procedia PDF Downloads 783105 Analysis of Influence of Intrinsic Motivation on Employee Affective Commitment
Authors: Yashar Ibragimov, Nino Berishvili
Abstract:
Technological, economic and other innovation-related advances of the 21st century have influenced the old, traditional business models. Presently, organizational change has become an integral part of corporate strategy for the majority of businesses. Such shifts have resulted in both new challenges and opportunities. The expansion of the use of information and communication technologies has driven fundamental shifts towards digital change. Organizations are being forced to revise processes, goals and overall mission in order to stay competitive in the marketplace. However, the implementation of digital transformation brings uncertainty, causes stress and raises concerns about future jobs. The study employs systematic literature review to fill the gap in understanding relationship between employee motivation and commitment during the transformation. A conceptual model proposes the antecedents (OCB and Leader Member Exchange) of employee motivation and investigates its impact on employee commitment to change. The utilized model elucidates how to maintain employee motivation and commitment in the context of organizational transformation and sets the ground for future research.Keywords: employee motivation, change commitment, change management, leader member exchange, organizational citizenship behavior
Procedia PDF Downloads 803104 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor
Authors: H. Kazemi Esfeh, V. Akbari, M. Ehdaei, T. N. G. Borhani, A. Shamiri, M. Najafi
Abstract:
In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs.Keywords: computational fluid dynamics, population balance equation, fluidized bed polymerization reactor, direct quadrature method of moments
Procedia PDF Downloads 3693103 Effects of Dividend Policy on Firm Profitability and Growth in Light of Present Economic Conditions
Authors: Madani Chahinaz
Abstract:
This study aims to shed light on the impact of dividend policy on corporate profitability and its relationship to growth, considering the economic developments taking place. The study was conducted on a sample of seven companies for the period from 2014 to 2020, based on a set of determinants to select variables affecting dividend distribution, where the descriptive analytical approach relied upon using graphical data models. The study concluded that companies that follow a well-studied dividend distribution policy enjoy higher profitability rates, which contributes to enhancing their growth in light of the economic developments taking place. There is also no statistically significant relationship between the variables of total asset growth and fixed asset growth and profitability. The study also concluded that there is statistical significance for the relationship between the sales volume growth variable, the self-financing ratio variable, and dividend distribution at a significance level of 0.05, as the random effects model was able to explain 68% of the changes in dividend distribution policy.Keywords: dividend distribution policy, profitability, growth, self-financing ratio
Procedia PDF Downloads 133102 A Solution for Production Facility Assignment: An Automotive Subcontract Case
Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal
Abstract:
This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models
Procedia PDF Downloads 3683101 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 4573100 Arsenic Removal by Membrane Technology, Adsorption and Ion Exchange: An Environmental Lifecycle Assessment
Authors: Karan R. Chavan, Paula Saavalainen, Kumudini V. Marathe, Riitta L. Keiski, Ganapati D. Yadav
Abstract:
Co-contamination of groundwaters by arsenic in different forms is often observed around the globe. Arsenic is introduced into the waters by several mechanisms and different technologies are proposed and practiced for effective removal. The assessment of three prominent technologies, namely, adsorption, ion exchange and nanofiltration was carried out in this study based on lifecycle methodology. The life of the technologies was divided into two stages: cradle to gate (C-G) and gate to gate (G-G), in order to find out the impacts in different categories of environmental burdens, human health and resource consumption. Life cycle inventory was estimated by use of models and design equations concerning with the different technologies. Regeneration was considered for each technology and over the course of its full lifetime. The impact values of adsorption technology for the C-G stage are greater by thousand times (103) and million times (106) compared to ion exchange and nanofiltration technologies, respectively. The impact of G-G stage of the lifecycle is the major contributor of the impact for all the 3 technologies due to electricity consumption during the operation. Overall, the ion Exchange technology fares well in this study of removal of As (V) only.Keywords: arsenic, nanofiltration, lifecycle assessment, membrane technology
Procedia PDF Downloads 2473099 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 4143098 Evaluation of Site Laboratory Conditions Effect on Seismic Design Characteristics in Ramhormoz
Authors: Sayyed Yaghoub Zolfegharifar, Khairul Anuar Kassim, Hossein Khoramrooz, Khodayar Farhadiasl, Sadegh Jahan
Abstract:
Iran is one of the world's seismically active countries so that it experiences many small to medium earthquakes annually and a large earthquake every ten years. Due to seism tectonic conditions and special geographical and climatic position, Iran has the potential to create numerous severe earthquakes. Therefore, seismicity studies and seismic zonation of seismic zones of the country are necessary. In this article, the effect of local site conditions on the characteristics of seismic design in Rahmormoz will be examined. After analyzing the seismic hazard for Rahmormoz through deterministic and statistical methods and preparing the necessary geotechnical models based on available data, the ground response will be analyzed for different parts of the city based on four inputs and acceleration level estimated for bedrock through the equivalent linear method and by means of Deep Soil program. Finally, through the analysis of the obtained results, the seismic profiles of the ground surface for different parts of the city will be presented.Keywords: seismic microzonation, ground response, resonance spectrum, period, site conditions
Procedia PDF Downloads 3493097 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo
Authors: Li Minghui, Min Shaorong, Zhang Jun
Abstract:
This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability
Procedia PDF Downloads 4573096 Calpains; Insights Into the Pathogenesis of Heart Failure
Authors: Mohammadjavad Sotoudeheian
Abstract:
Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte
Procedia PDF Downloads 703095 Distribution System Modelling: A Holistic Approach for Harmonic Studies
Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet
Abstract:
The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling
Procedia PDF Downloads 1623094 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1023093 Impact on Cost of Equity of Accounting and Disclosures
Authors: Abhishek Ranga
Abstract:
The study examined the effect of accounting choice and level of disclosure on the firm’s implied cost of equity in Indian environment. For the study accounting choice was classified as aggressive or conservative depending upon the firm’s choice of accounting methods, accounting policies and accounting estimates. Level of disclosure is the quantum of financial and non-financial information disclosed in firm’s annual report, essentially in note to accounts section, schedules forming part of financial statements and Management Discussion and Analysis report. Regression models were developed with cost of equity as a dependent variable and accounting choice, level of disclosure as an independent variable along with selected control variables. Cost of equity was measured using Edward-Bell-Ohlson (EBO) valuation model, to measure accounting choice Modified-Jones-Model (MJM) was used and level of disclosure was measured using a disclosure index essentially drawn from Botosan study. Results indicated a negative association between the implied cost of equity and conservative accounting choice and also between level of disclosure and cost of equity.Keywords: aggressive accounting choice, conservative accounting choice, disclosure, implied cost of equity
Procedia PDF Downloads 463