Search results for: tow structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7759

Search results for: tow structure

3229 Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa

Authors: A. Nkohla, U. Nwodo, L. V. Mabinya, A. I. Okoh

Abstract:

A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products.

Keywords: lignocellulosic material, chryseobacterium sp., submerged fermentation, cellulase, xylanase

Procedia PDF Downloads 311
3228 Sorption of Charged Organic Dyes from Anionic Hydrogels

Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos

Abstract:

Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.

Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents

Procedia PDF Downloads 260
3227 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method

Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas

Abstract:

Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.

Keywords: co-precipitation, ferrites, magnetic behavior, structure

Procedia PDF Downloads 250
3226 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 530
3225 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon

Procedia PDF Downloads 149
3224 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract

Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din

Abstract:

A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.

Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis

Procedia PDF Downloads 207
3223 Experimental and Theoretical Analysis of the Electromagnetic Environment in the Vicinity of Two 220Kv Power Lines

Authors: Wafa Tourab, Abdessalem Babouri, Mohamed Nemamcha

Abstract:

This work presents an experimental and theoretical characterization of electromagnetic environment in the vicinity of EL-HADJAR high voltage substation located in the eastern Algerian within a very high populated zone. There have been analyses on the effects of electromagnetic fields emanating from coupled multi-lines power systems on the health of the workers and people living in proximity of substations. An experimental investigation has been conducted around a circuit of two 220Kv lines running in parallel. The experimental results are validated by a flexible code of calculus developed in the environment Matlab. The implications of the results are discussed and are in very good agreement with the ICNIRP reference levels for occupational and non-occupational exposures. In a case of study, the separation between the two structures “S” is varied to demonstrate its influence on the electric and magnetic charges quantities generated by the circuit of lines proposed. It is found that increasing S decreases the electric and magnetic fields which occur at the center of the structure then reduces the coupling between lines. We concluded that the evaluation of the spacing between the phase conductors is of paramount interest in the preparation of the line’s implantation inside the electrical posts to reduce them radiations in the environment.

Keywords: low frequency, electromagnetic fields, electromagnetic coupling, high voltage power lines

Procedia PDF Downloads 391
3222 Effects on Spiritual Intelligence on Young Adult Muslim Female: Integration of Planned Behaviour Theory in Predicting Consumer Attitude towards Halal Cosmetic

Authors: Azreen Jihan Che Mohd Hashim, Rosidah Musa

Abstract:

Although 'Spiritual Intelligence' (SI) is hard to measure, it is impossible without a noble value that may affect the attitude in purchasing behavior process, so this paper aims to report on a pilot study analysis results in order to evaluate the degree of SI towards consumers’ attitude in purchasing halal cosmetics and, in turn, to reaffirm intention to purchase by using Theory Planned Behaviour (TPB). It is a descriptive cross-sectional study among the Muslim women as the subjects, working and staying in Klang valley area in Malaysia. The purpose of the study is to develop a new measurement scale to unravel and decompose the underlying dimensions of SI from the perspective of the Muslim deemed imperative. About 200 respondents of users and non-users of halal cosmetics are selected. The structure equation modeling (SEM) was conducted to examine the relationships among god, society and self, which are the dimensions of SI. A finding indicates that, in influencing attitude, those who obligate high spiritual intelligence have a good relationship with god, society and self which may influence them to purchase halal cosmetic product. This study offers important findings and implications for future research as it presents a framework on the importance of SI.

Keywords: spiritual intelligence, god, society, self, young adult Muslim female

Procedia PDF Downloads 372
3221 Designing of Efficient Polysulphide Reservoirs to Boost the Performance of Li-S Battery

Authors: Sarish Rehman, Kishwar Khan, Yanglong Hou

Abstract:

Among the existed myriad energy-storage technologies, lithium–sulfur batteries (LSBs) show the appealing potential for the ubiquitous growth of next-generation electrical energy storage application, owing to their unparalleled theoretical energy density of 2600 Wh/kg that is over five times larger than that of conventional lithium-ion batteries (LIBs). Despite its significant advances, its large scale implementations are plagued by multitude issues: particularly the intrinsic insulating nature of the sulfur (10-30 S/cm), mechanical degradation of the cathode due to large volume changes of sulfur up to 80 % during cycling and loss of active material (producing polysulfide shuttle effect). We design a unique structure, namely silicon/silica (Si/SiO2) crosslink with hierarchical porous carbon spheres (Si/SiO2@C), and use it as a new and efficient sulfur host to prepare Si/SiO2@C-S hybrid spheres to solve the hurdle of the polysulfides dissolution. As results of intriguing structural advantages developed hybrids spheres, it acts as efficient polysulfides reservoir for enhancing lithium sulfur battery (LSB) in the terms of capacity, rate ability and cycling stability via combined chemical and physical effects.

Keywords: high specific surface area, high power density, high content of sulfur, lithium sulfur battery

Procedia PDF Downloads 230
3220 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information

Authors: H. Moalla, A. Frikha

Abstract:

Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.

Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method

Procedia PDF Downloads 168
3219 The Capacity Building in the Natural Disaster Management of Thailand

Authors: Eakarat Boonreang

Abstract:

The past two decades, Thailand faced the natural disasters, for instance, Gay typhoon in 1989, tsunami in 2004, and huge flood in 2011. The disaster management in Thailand was improved both structure and mechanism for cope with the natural disaster since 2007. However, the natural disaster management in Thailand has various problems, for examples, cooperation between related an organizations have not unity, inadequate resources, the natural disaster management of public sectors not proactive, people has not awareness the risk of the natural disaster, and communities did not participate in the natural disaster management. Objective of this study is to find the methods for capacity building in the natural disaster management of Thailand. The concept and information about the capacity building and the natural disaster management of Thailand were reviewed and analyzed by classifying and organizing data. The result found that the methods for capacity building in the natural disaster management of Thailand should be consist of 1)link operation and information in the natural disaster management between nation, province, local and community levels, 2)enhance competency and resources of public sectors which relate to the natural disaster management, 3)establish proactive natural disaster management both planning and implementation, 4)decentralize the natural disaster management to local government organizations, 5)construct public awareness in the natural disaster management to community, 6)support Community Based Disaster Risk Management (CBDRM) seriously, and 7)emphasis on participation in the natural disaster management of all stakeholders.

Keywords: capacity building, Community Based Disaster Risk Management (CBDRM), Natural Disaster Management, Thailand

Procedia PDF Downloads 559
3218 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 399
3217 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 377
3216 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities

Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu

Abstract:

This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.

Keywords: fragility, friction pendulum bearing, nonstructural component, seismic

Procedia PDF Downloads 153
3215 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach

Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson

Abstract:

This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.

Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks

Procedia PDF Downloads 255
3214 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language

Authors: Samal Abzhanova, Saule Mussabekova

Abstract:

Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.

Keywords: interactive education, interactive methods, system of education, teaching a language

Procedia PDF Downloads 296
3213 The Lamination and Arterial Blood Supply of the Masseter Muscle of Camel (Camelus dromedarius)

Authors: Elsyed Fath Khalifa, Samer Mohamed Daghash

Abstract:

The present study was carried out to investigate the structure of the masseter muscle of camel and its attachments to the skull as well as the relationships with its arterial blood supply. Fourteen heads of clinically healthy camels of different ages and sexes were used in the present investigation. The both common carotid arteries of six specimens were cannulated and flushed with warm normal saline solution (0.9%) then injected with red colored neoprine (60%) latex in order to study the pattern of the blood supply to the masseter muscle. Two heads were injected with an eventually mixture of 75gm red lead oxide in 150cc latex and preserved in a cold room for 3-4 days then divided sagittaly along the median plane to avoid super imposition of the arteries. The arteries of the masseter muscle of each half were radiographed. Four heads were used in manual dissection to describe the laminar arrangement of the masseter muscle. The masseter muscle of the camel was very tendinous and was situated far caudally, which enable the camel to open its jaw very wide. In the camel, the masseter muscle was recognized into proper and improper masseter groups. The proper group included the first, second superficial, intermediate and deep masseter layers. The improper group consisted of maxillo-mandibularis and zygomatico-mandibularis. The remaining two heads were used for clearance.

Keywords: anatomy, camel, masseter, lamination, blood supply

Procedia PDF Downloads 323
3212 The Arabic Literary Text, between Proficiency and Pedagogy

Authors: Abdul Rahman M. Chamseddine, Mahmoud El-ashiri

Abstract:

In the field of language teaching, communication skills are essential for the learner to achieve, however, these skills, in general, might not support the comprehension of some texts of literary or artistic nature like poetry. Understanding sentences and expressions is not enough to understand a poem; other skills are needed in order to understand the special structure of a text which literary meaning is inapprehensible even when the lingual meaning is well comprehended. And then there is the need for many other components that surpass one text to other similar texts that can be understood through solid traditions, which do not form an obstacle in the face of change and progress. This is not exclusive to texts that are classified as a literary but it is also the same with some daily short phrases and indicatively charged expressions that can be classified as literary or bear a taste of literary nature.. it can be found in Newpapers’ titles, TV news reports, and maybe football commentaries… the need to understand this special lingual use – described as literary – is highly important to understand this discourse that can be generally classified as very far from literature. This work will try to explore the role of the literary text in the language class and the way it is being covered or dealt with throughout all levels of acquiring proficiency. It will also attempt to survery the position of the literary text in some of the most important books for teaching Arabic around the world. The same way grammar is needed to understand the language, another (literary) grammar is also needed for understanding literature.

Keywords: language teaching, Arabic, literature, pedagogy, language proficiency

Procedia PDF Downloads 273
3211 Identification of Active Phytocomponents in the Ethyl Acetate Extract of Glycosmis pentaphylla Retz. DC by Using GC-MS

Authors: M. Sivakumar, D. Chamundeeswari

Abstract:

Glycosmis pentaphylla is one of the medicinally important plants belonging to the family Rutaceae, commonly known as “Anam or Panal” in Tamil. Traditionally, leaves are useful in fever, hepatopathy, eczema, skin disease, helminthiasis, wounds, and erysipelas. The fruits are sweet and are useful in vitiated conditions of vata, kapha, cough, and bronchitis. The roots are good for facial inflammations, rheumatism, jaundice, and anemia. The preliminary phytochemical investigations indicated the presence of alkaloids, terpenoids, flavonoids, tannins, sugar, glycoside, and phenolic compounds. In the present study, the root part of Glycosmis pentaphylla was used, and the root was collected from Western Ghats of South India. The root was sun/shade dried and pulverized to powder in a mechanical grinder. The powder was successively extracted with various solvents, and the ethyl acetate extract of Glycosmis pentaphylla has been subjected to the GC-MS analysis. Amongst the 46 chemical constituents identified from this plant, three major phytoconstituents were reported for the first time. Marmesin, a furanocumarin compound with the chemical structure 7H-Furo (3,2-G) (1)Benzopyran-7-one,2,3–dihydro–2 - (1-Hydroxy-1methylethyl)-(s) is one of the three compounds identified for the first time at the concentration of 11-60% in ethyl acetate extract of Glycosmis pentaphylla. Others include, Beta.-Fagarine (4.71%) and Paverine (13.08%).

Keywords: ethyl acetate extract, Glycosmis pentaphylla, GC-MS analysis, Phytochemicals

Procedia PDF Downloads 303
3210 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 90
3209 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 177
3208 Enhancing Piezoelectric Properties of PVDF-HFP/PLA/PZT Nanocomposite for Energy Harvesting Application

Authors: Khadija Oumghar, Adil Eddiai, Omar Cherkaoui

Abstract:

Using flexible piezoelectric nanocomposite films in autonomous nano-systems, sensors, and portable electronics has garnered significant attention within the scientific community. This paper investigates the impact of Lead zirconate titanate (PZT) nanoparticles on the crystal structure of polyvinylidene fluoride hexafluoro propylene (PVDF-HFP)/polylactic acid (PLA), its distinctive crystallization behavior, mechanical properties, and the ensuing enhancement in piezoelectricity. In this study, PVDF-HFP/PLA/PZT nanocomposite films were fabricated utilizing the solvent casting technique, incorporating varying concentrations of PZT. Subsequent characterization of the films involved comprehensive analyses employing polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). POM observations revealed a homogeneous dispersion of PZT nanofillers within the PVDF-HFP/PLA matrix. FTIR and XRD analyses confirmed the presence of the β-phase in the nanocomposites, signifying improvements in their piezoelectric properties. The substantial augmentation in piezoelectricity witnessed emphasizes the potential of electroactive nanocomposites for energy harvesting applications. This research contributes to advancing sustainable energy technologies by elucidating the efficacy of PZT-enhanced PVDFHFP-PLA nanocomposites as proficient materials for piezoelectric energy conversion.

Keywords: piezoelectric films, energy harvesting, dielectric polymers, nanocomposite

Procedia PDF Downloads 5
3207 Economics and Management Information Systems: Institute of Management and Technology Enugu a Case Study

Authors: Cletus Agbowo

Abstract:

Standard principles, rules, regulations, norms and guides are necessities in practice especially in the Economics and management information system Institute of management of and technology (IMT) Enugu a case sturdy as presented by the presenter. Without mincing words, the fundamental bottle neck of management is economics, how to select to engage merger productivity resources to achieve uncountable objectives without tears. Management information system inevitably become bound up in organizational politics because the influence access to a key resource – namely information. Economics and management information can effect who does what to whom, when, where and how in an organization. In great institutions like the Institute of Management and Technology (IMT) Enugu a case study many new information systems require changes in personnel, individual routines that can be painful for those involved and require retraining and additional effort may or may not be compensated. In a nut shell, because management information system potentially change an organization’s structure, culture, business processes, and strategy, there is often considerable resistance to them when they are introduced. The case study have many schools, departments, divisions and units which needs research on economics and management information systems. A system can be defined as a set of interrelated components and / or elements, which reacts with input to produce output. A department in an organization is a system. The researcher is faced to itemize the practical challenges encountered and solution adopted by the Institute Management and Enugu state government.

Keywords: economics, information, management, productivity, regulations

Procedia PDF Downloads 385
3206 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 264
3205 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 333
3204 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 301
3203 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 84
3202 Analysis of Cannabinoid and Cannabidiol Affinity with GABRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis, were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands cannabinol and cannabidiol were obtained from PubChem. After a necessary process of the obtained files, AutoDock Vina was used to performing molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 119
3201 Outcome-Based Water Resources Management in the Gash River Basin, Eastern Sudan

Authors: Muna Mohamed Omer Mirghani

Abstract:

This paper responds to one of the key national development strategies and a typical challenge in the Gash Basin as well as in different parts of Sudan, namely managing water scarcity in view of climate change impacts in minor water systems sustaining over 50% of the Sudan population. While now focusing on the Gash river basin, the ultimate aim is to replicate the same approach in similar water systems in central and west Sudan. The key objective of the paper is the identification of outcome-based water governance interventions in Gash Basin, guided by the global Sustainable Development Goal six (SDG 6 on water and sanitation) and the Sudan water resource policy framework. The paper concluded that improved water resources management of the Gash Basin is a prerequisite for ensuring desired policy outcomes of groundwater use and flood risk management purposes. Analysis of various water governance dimensions in the Gash indicated that the operationalization of a Basin-level institutional reform is critically focused on informed actors and adapted practices through knowledge and technologies along with the technical data and capacity needed to make that. Adapting the devolved Institutional structure at state level is recommended to strengthen the Gash basin regulatory function and improve compliance of groundwater users.

Keywords: water governance, Gash Basin, integrated groundwater management, Sudan

Procedia PDF Downloads 181
3200 Navigating the Legal Seas: The Freedom to Choose Applicable Law in Tort

Authors: Sara Vora (Hoxha)

Abstract:

An essential feature of any international lawsuit is the ability of the parties to pick the law that would apply in the event of a tort claim. This option to choose the law to use in tort cases is based on Article 14 and 4/3 of the Rome II Regulation. The purpose of this article is to examine the boundaries of this freedom, as well as its relevance in international legal disputes. The article opens with a brief introduction to the basics of tort law. After a short introduction, the article demonstrates why Article 14 and 4/3 of the Rome II Regulation are so crucial to the right to select appropriate law in tort cases. The notion of the right to select the law to use in tort cases is examined, along with its breadth and possible restrictions. The article presents case studies to demonstrate how the right to select relevant law in tort might be put into practise. Case results and the judges' rationales for their rulings are examined. The possible influence of the right to select applicable law in tort on the process of harmonisation is also explored in this study. The results are summarised and the primary research question is addressed in the last section of the paper. In conclusion, the parties' ability to pick the law that rules their dispute via the freedom to choose relevant law in tort is a crucial feature of cross-border litigation. Despite certain restrictions, this freedom is nevertheless an important part of the legal structure that governs international conflicts.

Keywords: applicable law, tort, Rome II regulation, freedom to choose, cross-border litigation, harmonization of tort law

Procedia PDF Downloads 71