Search results for: Artificial Neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6716

Search results for: Artificial Neural network

2216 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 496
2215 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films

Authors: Konysbek Aksaule

Abstract:

The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.

Keywords: university, education, students, foreign language, feature film

Procedia PDF Downloads 151
2214 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis

Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger

Abstract:

In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.

Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis

Procedia PDF Downloads 336
2213 Load Balancing Algorithms for SIP Server Clusters in Cloud Computing

Authors: Tanmay Raj, Vedika Gupta

Abstract:

For its groundbreaking and substantial power, cloud computing is today’s most popular breakthrough. It is a sort of Internet-based computing that allows users to request and receive numerous services in a cost-effective manner. Virtualization, grid computing, and utility computing are the most widely employed emerging technologies in cloud computing, making it the most powerful. However, cloud computing still has a number of key challenges, such as security, load balancing, and non-critical failure adaption, to name a few. The massive growth of cloud computing will put an undue strain on servers. As a result, network performance will deteriorate. A good load balancing adjustment can make cloud computing more productive and in- crease client fulfillment execution. Load balancing is an important part of cloud computing because it prevents certain nodes from being overwhelmed while others are idle or have little work to perform. Response time, cost, throughput, performance, and resource usage are all parameters that may be improved using load balancing.

Keywords: cloud computing, load balancing, computing, SIP server clusters

Procedia PDF Downloads 130
2212 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks

Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani

Abstract:

Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.

Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA

Procedia PDF Downloads 485
2211 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 81
2210 Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities

Authors: Andrey Kashcheev, Victor Sytnikov, Mikhail Dubinin, Elena Filipeva, Dmitriy Sorokin

Abstract:

Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations.

Keywords: superconductivity, cable lines, superconducting cable, AC cable, feasibility

Procedia PDF Downloads 104
2209 Timely Screening for Palliative Needs in Ambulatory Oncology

Authors: Jaci Mastrandrea

Abstract:

Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening is directly correlated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project is to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline from March 15th, 2022, to April 29th, 2022. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated and evidence-based PC referral criteria. The tool was initially implemented using paper forms and later was integrated into the Epic-Beacon EHR system. Patients were screened by registered nurses on the SLCTC treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher were considered to be a positive screen. Scores of five or higher triggered a PC referral order in the patient’s EHR for the oncologist to review and approve. All patients with a positive screen received an educational handout on the topic of PC, and the EHR was flagged for follow-up. Results: Prior to implementation of the PSCNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the first 100 patient screenings completed within the eight-week data collection period. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting the criteria were flagged in the EHR for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.

Keywords: oncology, palliative care, symptom management, symptom screening, ambulatory oncology, cancer, supportive care

Procedia PDF Downloads 78
2208 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 15
2207 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, decoupled model, load flow, control parameters

Procedia PDF Downloads 559
2206 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol

Authors: S. Vasundra, D. Venkatesh

Abstract:

Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.

Keywords: wireless networks, ant colony optimization, load balancing, architecture

Procedia PDF Downloads 430
2205 Extension Services' Needs of Small Farmers in Biliran Province, Philippines

Authors: Mario C. Nierras

Abstract:

This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers.

Keywords: extension, extension service, extension service needs, extension service program, farmers, small farmers, marginal farmers

Procedia PDF Downloads 441
2204 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 119
2203 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier

Authors: Kadam Bhambri, Neena Gupta

Abstract:

All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.    

Keywords: all optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modultation

Procedia PDF Downloads 459
2202 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures

Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley

Abstract:

Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.

Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA

Procedia PDF Downloads 164
2201 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: embedded computing, internet of things, mobile computing, wireless technologies

Procedia PDF Downloads 323
2200 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs

Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar

Abstract:

The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.

Keywords: Internet Gateway, MANET, mobility, selection criteria

Procedia PDF Downloads 426
2199 Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications

Authors: Kelaiaia Mounia Samira, Labar Hocine, Mesbah Tarek, Kelaiaia samia

Abstract:

The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery’s internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced.

Keywords: modeling, battery, MPPT, charging, PV Panel

Procedia PDF Downloads 527
2198 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 104
2197 A New Approach for PE100 Characterization; An in-Reactor HDPE Alloy with Semi Hard and Soft Segments

Authors: Sasan Talebnezhad, Parviz Hamidia

Abstract:

GPC and RMS analysis showed no distinct difference between PE 100 On, Off, and Reference grade. But FTIR spectra and multiple endothermic peaks obtained from SSA analysis, attributed to heterogeneity of ethylene sequence length, lamellar thickness and also the non-uniformity of short chain branching, showed sharp discrepancy and proposed a blend structure of high-density polyethylenes in PE 100 grade. Catalysis along with process parameters dictates poly blend PE 100 structure. This in-reactor blend is a mixture of compatible co-crystallized phases with different crystalinity, forming a physical semi hard and soft segment network responsible for improved impact properties in PE 100 pipe grade. We propose a new approach for PE100 evaluation that is more efficient than normal microstructure characterization.

Keywords: HDPE, pipe grade, in-reactor blend, hard and soft segments

Procedia PDF Downloads 449
2196 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation

Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal

Abstract:

We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).

Keywords: authentication, edge computing, industrial IoT, post-quantum resistance

Procedia PDF Downloads 204
2195 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 94
2194 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 96
2193 Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin

Authors: Muhammad Omer Aijaz, Sajjad Haider, Fahad S. Al Mubddal, Yousef Al-Zeghayer, Waheed A. Al Masry

Abstract:

The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%).

Keywords: polymer hydrogels, chitosan, SEMI-IPN, polyacrylonitrile, epichlorohydrin

Procedia PDF Downloads 379
2192 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications

Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi

Abstract:

A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.

Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity

Procedia PDF Downloads 519
2191 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 95
2190 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks

Authors: Richard Tanaka, Ying Zhu

Abstract:

This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.

Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks

Procedia PDF Downloads 222
2189 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 358
2188 Urban Poor: The Situations and Characteristics of the Problem and Social Welfare Service of Bangkok Metropolis

Authors: Sanchai Ratthanakwan

Abstract:

This research aims to study situations and characteristics of the problems facing the urban poor. The data and information are collected by focus group and in-depth interview leader and members of Four Regions Slum Network, community representatives and the social welfare officer. The research can be concluded that the problems of the urban poor faced with three major problems: Firstly, the shortage of housing and stability issues in housing; secondly, the problem of substandard quality of life; and thirdly, the debt problem. The study found that a solution will be found in two ways: First way is the creation of housing for the urban poor in slums or community intrusion by the state. Second way is the stability in the housing and subsistence provided by the community center called “housing stability”.

Keywords: urban poor, social welfare, Bangkok metropolis, housing stability

Procedia PDF Downloads 427
2187 Nanoceutical Intervention (Nanodrug) of Neonatal Hyperbilirubinemias Compared to Conventional Phototherapy

Authors: Samir Kumar Pal

Abstract:

Background: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. Uncontrolled hyperbilirubinemia is a potential problem in developing countries, including India, because of the lack of reliable healthcare institutes for conventional phototherapy. In India, most of the rural subjects duel in the exchange limit during transport, leading to a risk of kernicterus when they arrive at the treatment centre. Thus, an alternative pharmaceutical agent is needed for the hours. Objective: Exploration of a distinct therapeutic strategy for the control of neonatal hyperbilirubinemia compared to conventional phototherapy in a clinical setting. Method: We synthesized, characterized and investigated a spinel-structured Manganese citrate nanocomplex (C-Mn₃O₄ NC, the nanodrug) along with conventional phototherapy in neonatal subjects. We have also observed BIND scores in order to assess neurological dysfunctions. Results: Our observational study clearly reveals that the rate of declination of bilirubin in neonatal subjects with nanodrug oral administration and phototherapy is faster compared to that in the case of phototherapy only. The associated neural dysfunctions were also found to be significantly lower in the case of combined therapy. Conclusion: This study demonstrates that combined therapy works better than conventional phototherapy only for the control of hyperbilirubinemia. We have observed that a significant portion of neonatal subjects requiring blood exchange has been prevented with the combined therapeutic strategy. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemo preventive approach to clinical settings.

Keywords: nanodrug, nanoparticle, Neonatal hyperbilirubinemia, alternative to phototherapy, redox modulation, redox medicine

Procedia PDF Downloads 63