Search results for: discourse processing
312 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 150311 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 95310 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model
Authors: A. Shakoor, M. Arshad
Abstract:
The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.Keywords: groundwater quality, groundwater management, PMWIN, MT3D model
Procedia PDF Downloads 378309 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 205308 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 97307 Customized Temperature Sensors for Sustainable Home Appliances
Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy
Abstract:
Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency
Procedia PDF Downloads 73306 Childhood Adversity and Delinquency in Youth: Self-Esteem and Depression as Mediators
Authors: Yuhui Liu, Lydia Speyer, Jasmin Wertz, Ingrid Obsuth
Abstract:
Childhood adversities refer to situations where a child's basic needs for safety and support are compromised, leading to substantial disruptions in their emotional, cognitive, social, or neurobiological development. Given the prevalence of adversities (8%-39%), their impact on developmental outcomes is challenging to completely avoid. Delinquency is an important consequence of childhood adversities, given its potential causing violence and other forms of victimisation, influencing victims, delinquents, their families, and the whole of society. Studying mediators helps explain the link between childhood adversity and delinquency, which aids in designing effective intervention programs that target explanatory variables to disrupt the path and mitigate the effects of childhood adversities on delinquency. The Dimensional Model of Adversity and Psychopathology suggests that threat-based adversities influence outcomes through emotion processing, while deprivation-based adversities do so through cognitive mechanisms. Thus, considering a wide range of threat-based and deprivation-based adversities and their co-occurrence and their associations with delinquency through cognitive and emotional mechanisms is essential. This study employs the Millennium Cohort Study, tracking the development of approximately 19,000 individuals born across England, Scotland, Wales and Northern Ireland, representing a nationally representative sample. Parallel mediation models compare the mediating roles of self-esteem (cognitive) and depression (affective) in the associations between childhood adversities and delinquency. Eleven types of childhood adversities were assessed both individually and through latent class analysis, considering adversity experiences from birth to early adolescence. This approach aimed to capture how threat-based, deprived-based, or combined threat and deprived-based adversities are associated with delinquency. Eight latent classes were identified: three classes (low adversity, especially direct and indirect violence; low childhood and moderate adolescent adversities; and persistent poverty with declining bullying victimisation) were negatively associated with delinquency. In contrast, three classes (high parental alcohol misuse, overall high adversities, especially regarding household instability, and high adversity) were positively associated with delinquency. When mediators were included, all classes showed a significant association with delinquency through depression, but not through self-esteem. Among the eleven single adversities, seven were positively associated with delinquency, with five linked through depression and none through self-esteem. The results imply the importance of affective variables, not just for threat-based but also deprivation-based adversities. Academically, this suggests exploring other mechanisms linking adversities and delinquency since some adversities are linked through neither depression nor self-esteem. Clinically, intervention programs should focus on affective variables like depression to mitigate the effects of childhood adversities on delinquency.Keywords: childhood adversity, delinquency, depression, self-esteem
Procedia PDF Downloads 32305 Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste
Authors: Rajeev Ravindran, Amit K. Jaiswal
Abstract:
Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound
Procedia PDF Downloads 366304 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 361303 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study
Authors: Insiya Bhalloo
Abstract:
It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition
Procedia PDF Downloads 357302 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100301 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects
Authors: Saddam Hussain, Ghadeer Mohsen Albadrani
Abstract:
Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain
Procedia PDF Downloads 80300 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms
Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.
Abstract:
Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery
Procedia PDF Downloads 175299 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents
Authors: A. Kesraoui, M. Seffen
Abstract:
Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.Keywords: adsorption, alternating current, dyes, modeling
Procedia PDF Downloads 160298 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials
Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.
Abstract:
Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying
Procedia PDF Downloads 308297 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 299296 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid
Authors: Benjamin Blat Belmonte, Stephan Rinderknecht
Abstract:
The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market
Procedia PDF Downloads 74295 Use of Cassava Waste and Its Energy Potential
Authors: I. Inuaeyen, L. Phil, O. Eni
Abstract:
Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.Keywords: bio-refinery, cassava waste, energy, process modelling
Procedia PDF Downloads 373294 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model
Authors: T. Thein, S. Kalyar Myo
Abstract:
Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)
Procedia PDF Downloads 286293 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 160292 Structure Conduct and Performance of Rice Milling Industry in Sri Lanka
Authors: W. A. Nalaka Wijesooriya
Abstract:
The increasing paddy production, stabilization of domestic rice consumption and the increasing dynamism of rice processing and domestic markets call for a rethinking of the general direction of the rice milling industry in Sri Lanka. The main purpose of the study was to explore levels of concentration in rice milling industry in Polonnaruwa and Hambanthota which are the major hubs of the country for rice milling. Concentration indices reveal that the rice milling industry in Polonnaruwa operates weak oligopsony and is highly competitive in Hambanthota. According to the actual quantity of paddy milling per day, 47 % is less than 8Mt/Day, while 34 % is 8-20 Mt/day, and the rest (19%) is greater than 20 Mt/day. In Hambanthota, nearly 50% of the mills belong to the range of 8-20 Mt/day. Lack of experience of the milling industry, poor knowledge on milling technology, lack of capital and finding an output market are the major entry barriers to the industry. Major problems faced by all the rice millers are the lack of a uniform electricity supply and low quality paddy. Many of the millers emphasized that the rice ceiling price is a constraint to produce quality rice. More than 80% of the millers in Polonnaruwa which is the major parboiling rice producing area have mechanical dryers. Nearly 22% millers have modern machineries like color sorters, water jet polishers. Major paddy purchasing method of large scale millers in Polonnaruwa is through brokers. In Hambanthota major channel is miller purchasing from paddy farmers. Millers in both districts have major rice selling markets in Colombo and suburbs. Huge variation can be observed in the amount of pledge (for paddy storage) loans. There is a strong relationship among the storage ability, credit affordability and the scale of operation of rice millers. The inter annual price fluctuation ranged 30%-35%. Analysis of market margins by using series of secondary data shows that farmers’ share on rice consumer price is stable or slightly increases in both districts. In Hambanthota a greater share goes to the farmer. Only four mills which have obtained the Good Manufacturing Practices (GMP) certification from Sri Lanka Standards Institution can be found. All those millers are small quantity rice exporters. Priority should be given for the Small and medium scale millers in distribution of storage paddy of PMB during the off season. The industry needs a proper rice grading system, and it is recommended to introduce a ceiling price based on graded rice according to the standards. Both husk and rice bran were underutilized. Encouraging investment for establishing rice oil manufacturing plant in Polonnaruwa area is highly recommended. The current taxation procedure needs to be restructured in order to ensure the sustainability of the industry.Keywords: conduct, performance, structure (SCP), rice millers
Procedia PDF Downloads 328291 Lying in a Sender-Receiver Deception Game: Effects of Gender and Motivation to Deceive
Authors: Eitan Elaad, Yeela Gal-Gonen
Abstract:
Two studies examined gender differences in lying when the truth-telling bias prevailed and when inspiring lying and distrust. The first study used 156 participants from the community (78 pairs). First, participants completed the Narcissistic Personality Inventory, the Lie- and Truth Ability Assessment Scale (LTAAS), and the Rational-Experiential Inventory. Then, they participated in a deception game where they performed as senders and receivers of true and false communications. Their goal was to retain as many points as possible according to a payoff matrix that specified the reward they would gain for any possible outcome. Results indicated that males in the sender position lied more and were more successful tellers of lies and truths than females. On the other hand, males, as receivers, trusted less than females but were not better at detecting lies and truths. We explained the results by a. Male's high perceived lie-telling ability. We observed that confidence in telling lies guided participants to increase their use of lies. Male's lie-telling confidence corresponded to earlier accounts that showed a consistent association between high self-assessed lying ability, reports of frequent lying, and predictions of actual lying in experimental settings; b. Male's narcissistic features. Earlier accounts described positive relations between narcissism and reported lying or unethical behavior in everyday life situations. Predictions about the association between narcissism and frequent lying received support in the present study. Furthermore, males scored higher than females on the narcissism scale; and c. Male's experiential thinking style. We observed that males scored higher than females on the experiential thinking style scale. We further hypothesized that the experiential thinking style predicts frequent lying in the deception game. Results confirmed the hypothesis. The second study used one hundred volunteers (40 females) who underwent the same procedure. However, the payoff matrix encouraged lying and distrust. Results showed that male participants lied more than females. We found no gender differences in trust. Males and females did not differ in their success of telling and detecting lies and truths. Participants also completed the LTAAS questionnaire. Males assessed their lie-telling ability higher than females, but the ability assessment did not predict lying frequency. A final note. The present design is limited to low stakes. Participants knew that they were participating in a game, and they would not experience any consequences from their deception in the game. Therefore, we advise caution when applying the present results to lying under high stakes.Keywords: gender, lying, detection of deception, information processing style, self-assessed lying ability
Procedia PDF Downloads 148290 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU
Authors: Ali Abdul Kadhim, Fue Lien
Abstract:
Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model
Procedia PDF Downloads 207289 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality
Authors: Alisa Salimova, Jiane Zuo, Christopher Homer
Abstract:
The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing
Procedia PDF Downloads 111288 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation
Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft
Abstract:
The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.Keywords: capture, CO2, ionic liquids, ionic poly(urethane)
Procedia PDF Downloads 234287 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem
Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki
Abstract:
Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis
Procedia PDF Downloads 334286 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 110285 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 130284 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance
Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow
Abstract:
The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation
Procedia PDF Downloads 288283 Methods Used to Achieve Airtightness of 0.07 Ach@50Pa for an Industrial Building
Authors: G. Wimmers
Abstract:
The University of Northern British Columbia needed a new laboratory building for the Master of Engineering in Integrated Wood Design Program and its new Civil Engineering Program. Since the University is committed to reducing its environmental footprint and because the Master of Engineering Program is actively involved in research of energy efficient buildings, the decision was made to request the energy efficiency of the Passive House Standard in the Request for Proposals. The building is located in Prince George in Northern British Columbia, a city located at the northern edge of climate zone 6 with an average low between -8 and -10.5 in the winter months. The footprint of the building is 30m x 30m with a height of about 10m. The building consists of a large open space for the shop and laboratory with a small portion of the floorplan being two floors, allowing for a mezzanine level with a few offices as well as mechanical and storage rooms. The total net floor area is 1042m² and the building’s gross volume 9686m³. One key requirement of the Passive House Standard is the airtight envelope with an airtightness of < 0.6 ach@50Pa. In the past, we have seen that this requirement can be challenging to reach for industrial buildings. When testing for air tightness, it is important to test in both directions, pressurization, and depressurization, since the airflow through all leakages of the building will, in reality, happen simultaneously in both directions. A specific detail or situation such as overlapping but not sealed membranes might be airtight in one direction, due to the valve effect, but are opening up when tested in the opposite direction. In this specific project, the advantage was the overall very compact envelope and the good volume to envelope area ratio. The building had to be very airtight and the details for the windows and doors installation as well as all transitions from walls to roof and floor, the connections of the prefabricated wall panels and all penetrations had to be carefully developed to allow for maximum airtightness. The biggest challenges were the specific components of this industrial building, the large bay door for semi-trucks and the dust extraction system for the wood processing machinery. The testing was carried out in accordance with EN 132829 (method A) as specified in the International Passive House Standard and the volume calculation was also following the Passive House guideline resulting in a net volume of 7383m3, excluding all walls, floors and suspended ceiling volumes. This paper will explore the details and strategies used to achieve an airtightness of 0.07 ach@50Pa, to the best of our knowledge the lowest value achieved in North America so far following the test protocol of the International Passive House Standard and discuss the crucial steps throughout the project phases and the most challenging details.Keywords: air changes, airtightness, envelope design, industrial building, passive house
Procedia PDF Downloads 148