Search results for: supervised decision tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4983

Search results for: supervised decision tree

4563 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
4562 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 300
4561 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier

Procedia PDF Downloads 466
4560 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning

Authors: Mirza Waseem Abbas, Syed Danish Raza

Abstract:

For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).

Keywords: change detection, area estimation, machine learning, urbanization, remote sensing

Procedia PDF Downloads 249
4559 The Impact of Interrelationship between Business Intelligence and Knowledge Management on Decision Making Process: An Empirical Investigation of Banking Sector in Jordan

Authors: Issa M. Shehabat, Huda F. Y. Nimri

Abstract:

This paper aims to study the relationship between knowledge management in its processes, including knowledge creation, knowledge sharing, knowledge organization, and knowledge application, and business intelligence tools, including OLAP, data mining, and data warehouse, and their impact on the decision-making process in the banking sector in Jordan. A total of 200 questionnaires were distributed to the sample of the study. The study hypotheses were tested using the statistical package SPSS. Study findings suggest that decision-making processes were positively related to knowledge management processes. Additionally, the components of business intelligence had a positive impact on decision-making. The study recommended conducting studies similar to this study in other sectors such as the industrial, telecommunications, and service sectors to contribute to enhancing understanding of the role of the knowledge management processes and business intelligence tools.

Keywords: business intelligence, knowledge management, decision making, Jordan, banking sector

Procedia PDF Downloads 144
4558 Evaluation of Suitable Housing System for Adoption in Addis Ababa

Authors: Yidnekachew Daget, Hong Zhang

Abstract:

The decision-making process in order to select the suitable housing system for application in housing construction has been a challenge for many developing countries. This study evaluates the decision process to identify the suitable housing systems for adoption in Addis Ababa. Ten industrialized housing systems were considered as alternatives for comparison. These systems have been used in a housing development in different parts of the world. A relevant literature review and contextual analysis were conducted. An analytical hierarchy process and an Expert Choice Comparion platform were employed as a research technique and tool to evaluate the professionals’ level of preferences with regard to the housing systems. The findings revealed the priority rank and characteristics of the suitable housing systems to be adapted for application in housing development. The decision criteria and the analytical process used in this study can help the decision-makers and the housing developers in developing countries make effective evaluations and decisions.

Keywords: analytical hierarchy process, decision-making, expert choice comparion, industrialized housing systems

Procedia PDF Downloads 264
4557 A Similarity/Dissimilarity Measure to Biological Sequence Alignment

Authors: Muhammad A. Khan, Waseem Shahzad

Abstract:

Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.

Keywords: alignment, distance, homology, mathematical model, phylogenetic tree

Procedia PDF Downloads 178
4556 Effect of Temperature on Germination and Seedlings Development of Moringa Oleifera Lam

Authors: Khater N., Rahmine S., Bougoffa C., Bouguenna T., Ouanes H.

Abstract:

Moringa oleifera L. species is considered one of the most useful trees in the world, possessing many interesting properties that make it of great scientific interest. It has been described as the miracle tree, the tree of a thousand virtues, the tree of life and God's gift to man. The present study aims to introduce, produce, and develop Moringa Oleifera as a species with high ecological potential (resistance to biotic and abiotic stresses and productivity), high added value, and multiple virtues. The aim of this work is to study the germination potential of this species under different temperature conditions. In this study, the germination assay was tested in two different temperature ranges: internal (laboratory ambient temperature between 22°c and 25°c) and external (seasonal temperature between 4°c and 8°c). Morphological and physiological analyses were carried out by Shoot length (SL), root length (RL), diameter at the crown (DC), fresh weight of shoots (FWS), fresh weight of roots (FWR), dry weight of shoots (DWS) and dry weight of roots (DWS). For all these variables, the results of the study reveal a significant difference between the two temperature intervals, with a high germination rate of 81. 81% and plant growth was rapid (7cm during 24h) in the laboratory temperature; in contrast to the external temperatures, a germination rate value of around 27% was recorded, and germination took place after 20 days of sowing, with slower plant growth. The results obtained show that a temperature greater than or equal to 25° is the ideal temperature for the germination and growth of moringa seeds and has a positive influence on the speed and percentage of germination.

Keywords: moringa oleifera, temperature, germination rate, growth, biomass

Procedia PDF Downloads 62
4555 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider

Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf

Abstract:

We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach

Keywords: top tagger, multivariate, deep learning, LHC, single top

Procedia PDF Downloads 111
4554 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93
4553 Unveiling Electrical Treeing Mechanisms in Epoxy Resin Insulation Degradation

Authors: Chien-Kuo Chang, You-Syuan Wu, Min-Chiu Wu, Bharath-Kumar Boyanapalli

Abstract:

The electrical treeing mechanism in epoxy resin insulation is a critical area of study concerning the degradation of high-voltage electrical equipment. In this study, we conducted pressure-induced degradation experiments on epoxy resin specimens using a needle-plane electrode structure to simulate electrical treeing. The specimens featured two different defect spacings, allowing for detailed observation facilitated by time-lapse photography. Our investigation revealed four distinct stages of insulation degradation: initial dark tree growth, filamentary tree growth, reverse tree growth, and eventual insulation breakdown. The initial dark treeing stage, though shortest in duration, exhibited a thicker main branch and shorter branching, ceasing upon the appearance of filamentary treeing. Filamentary treeing manifested in two forms: dark filamentary treeing during the resin's glassy state, characterized by branching structures, and fuzzy filamentary treeing during the rubbery state, resembling white feathers. The channels formed by filamentary treeing were observed to be as narrow as a few micrometers and continued to grow until the end of the experiment. Additionally, the transition to reverse treeing occurred when filamentary treeing reached the ground electrode, with the earliest manifestation being growth from the ground electrode towards the high-voltage end.

Keywords: epoxy resin insulation, high-voltage equipment, electrical treeing mechanism

Procedia PDF Downloads 75
4552 Conceptualizing a Strategic Facilities Management Decision Framework for Heritage Building Maintenance Management

Authors: Adegoriola Mayowa I., Lai Joseph H. K., Yung Esther H. K., Chan Edwin H. K.

Abstract:

Heritage buildings (HBs) as structures with historical and architectural relevance that form an integral part of contemporary society. These buildings deserve to be protected for as long as possible to retain their significance. Therefore, the need to prioritize HB maintenance management is pertinent. However, the decision-making process of HBMM can be relatively daunting. The decision-making challenge may be attributed to the multiple 'stakeholders' expectation and requirement which needs to be met. To this end, professionals in the built environment have identified the need to apply the strategic concept of facilities management (FM) in decision making. Furthermore, the different maintenance dimensions have been applied to maintenance management of residential, commercial, and health facilities. Unfortunately, these different maintenance approaches, such as FM, sustainable FM, urban FM, green FM, and strategic FM, are yet to be fully explored in the decision-making process of HBMM. To bridge this gap, this study focuses on developing a framework for strategic decision-making HBMM, which helps achieve HBMM sustainability. At the study's inception, relevant works of literature in the domains of HBMM and FM were conducted. This review helped in the identification of contemporary maintenance practices and their applicability to HBMM. Afterward, a conceptual framework to aid decision-making in HBMM was developed. This framework integrated the concept of FM scope (people, place, process, and technology) while ensuring that decisions plans were made at strategic, tactical, and operational levels. Also, the different characteristics of HBs and stakeholders' requirements were considered in the framework. The conceptual framework presents a holistic guide for professionals in HBMM to ensure that decision processes and outcomes are practical and efficient. It also contributes to the existing body of knowledge on the integration of FM in HBMM. Furthermore, it will serve as a basis for future studies by applying the conceptualized framework in actual cases.

Keywords: decision-making, facility management, strategy, sustainability, heritage building, maintenance

Procedia PDF Downloads 138
4551 Factors That Influence Decision Making of Foreign Volunteer Tourists in Thailand

Authors: Paramet Damchoo

Abstract:

The purpose of this study is to study the factors that influence the decision making of foreign volunteer tourists in Thailand. A sample size was 400 drawn from 10 provinces of Thailand using cluster sampling method. The factor analysis was used to analysis the data. The findings indicate that volunteer tourism which was based in Thailand contained a total of 45 activities which could be divided into 4 categories. The most of these tourists were from Europe including UK and Scandinavia which was 54.50 percent. Moreover, the tourists were male rather than female and 63.50 Percent of them ware younger than 20 years old. It is also found that there are 67.00 percent of the tourists used website to find where the volunteer tourism was based. Finally, the factors that influence the decision making of foreign volunteer tourists in Thailand consist of a wide variety of activities together with a flexibility in their activities and also low prices.

Keywords: decision making, volunteer tourism, special interest tourism, GAP year

Procedia PDF Downloads 344
4550 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory

Procedia PDF Downloads 448
4549 The Influence of Superordinate Identity and Group Size on Group Decision Making through Discussion

Authors: Lin Peng, Jin Zhang, Yuanyuan Miao, Quanquan Zheng

Abstract:

Group discussion and group decision-making have long been a topic of research interest. Traditional research on group decision making typically focuses on the strategies or functional models of combining members’ preferences to reach an optimal consensus. In this research, we want to explore natural process group decision making through discussion and examine relevant, influential factors--common superordinate identity shared by group and size of the groups. We manipulated the social identity of the groups into either a shared superordinate identity or different subgroup identities. We also manipulated the size to make it either a big (6-8 person) group or small group (3-person group). Using experimental methods, we found members of a superordinate identity group tend to modify more of their own opinions through the discussion, compared to those only identifying with their subgroups. Besides, members of superordinate identity groups also formed stronger identification with group decision--the results of group discussion than their subgroup peers. We also found higher member modification in bigger groups compared to smaller groups. Evaluations of decisions before and after discussion as well as group decisions are strongly linked to group identity, as members of superordinate group feel more confident and satisfied with both the results and decision-making process. Members’ opinions are more similar and homogeneous in smaller groups compared to bigger groups. This research have many implications for further research and applied behaviors in organizations.

Keywords: group decision making, group size, identification, modification, superordinate identity

Procedia PDF Downloads 307
4548 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems

Authors: Nasser Almonawer

Abstract:

Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.

Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method

Procedia PDF Downloads 46
4547 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey

Authors: Erdal Akyol, Mutlu Alkan

Abstract:

Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.

Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics

Procedia PDF Downloads 459
4546 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 126
4545 Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance

Authors: Teng-Chiu Lin, Pei-Jen Lee Shaner, Shin-Yu Lin

Abstract:

Both forest age and physical damages due to weather events such as tropical cyclones can influence forest characteristics and subsequently its capacity to sequester carbon. Detangling these influences is therefore a pressing issue under climate change. In this study, we compared the compositional and structural characteristics of three forests in Taiwan differing in age and severity of typhoon disturbances. We found that the two forests (one old-growth forest and one secondary forest) experiencing more severe typhoon disturbances had shorter stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality than the other secondary forest experiencing less severe typhoon disturbances. On the other hand, the old-growth forest had a larger amount of woody debris than the two secondary forests, suggesting a dominant role of forest age on woody debris accumulation. Of the three forests, only the two experiencing more severe typhoon disturbances formed new gaps following two 2015 typhoons, and between these two forests, the secondary forest gained more gaps than the old-growth forest. Consider that older forests generally have more gaps due to a higher background tree mortality, our findings suggest that the age effects on gap dynamics may be reversed by typhoon disturbances. This study demonstrated the effects of typhoons on forest characteristics, some of which could negate the age effects and rejuvenate older forests. If cyclone disturbances were to intensity under climate change, the capacity of older forests to sequester carbon may be reduced.

Keywords: typhoon, canpy gap, coarse woody debris, forest stature, forest age

Procedia PDF Downloads 269
4544 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 135
4543 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves

Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri

Abstract:

A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.

Keywords: spectrophotometric determination, Ficus caricatree leaves, synthetic reagents, hafnium

Procedia PDF Downloads 209
4542 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 190
4541 Design of Knowledge Management System with Geographic Information System

Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan

Abstract:

Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.

Keywords: 5C4C, data, information, knowledge

Procedia PDF Downloads 461
4540 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management

Authors: Irina Khutsishvili

Abstract:

The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.

Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set

Procedia PDF Downloads 428
4539 Factors Influencing the Decision of International Tourists to Revisit Bangkok,Thailand

Authors: Taksina Bunbut, Kevin Wongleedee

Abstract:

The purposes of this research were to study factors influencing the decision of international tourists to revisit Bangkok, Thailand. A random 200 samples was collected. Half the sample group was male and the other half was female. A questionnaire was used to collect data and small in-depth interviews were also used to get their opinions about importance of tourist decision making factors. The findings revealed that the majority of respondents rated these factors at medium level of importance. The ranking showed that the first three important factors were a safe place to stay, friendly people, and clean food. The three least important factors were a convenience transportation, clean country, and child friendly. In addition there was no significance difference between male and female in their ratings of the factors of influencing the decision of international tourists to revisit Bangkok, Thailand.

Keywords: factors, international tourists, revisit, Thailand

Procedia PDF Downloads 327
4538 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 147
4537 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists

Authors: Sakul Jariyachansit

Abstract:

The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.

Keywords: factor, decision making, ASEAN tourists, tourism in Thailand

Procedia PDF Downloads 206
4536 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 467
4535 Neural Correlates of Decision-Making Under Ambiguity and Conflict

Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy

Abstract:

Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

Keywords: decision making, uncertainty, ambiguity, conflict, fMRI

Procedia PDF Downloads 564
4534 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach

Authors: Alma Sobrevilla

Abstract:

Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.

Keywords: women, decision-making power, intrahousehold, Mexico

Procedia PDF Downloads 353