Search results for: spiritual intelligence
1503 Artificial Intelligence: Reimagining Education
Authors: Silvia Zanazzi
Abstract:
Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.Keywords: education, artificial intelligence, teaching, learning
Procedia PDF Downloads 201502 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19
Authors: Parisa Mansour
Abstract:
Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT
Procedia PDF Downloads 631501 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning
Authors: Chandan Hegde, K. Ashwini
Abstract:
Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning
Procedia PDF Downloads 1871500 Impact of the Fourth Industrial Revolution on Food Security in South Africa
Authors: Fiyinfoluwa Giwa, Nicholas Ngepah
Abstract:
This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square
Procedia PDF Downloads 751499 Applications of Artificial Neural Networks in Civil Engineering
Authors: Naci Büyükkaracığan
Abstract:
Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics
Procedia PDF Downloads 4121498 Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Authors: M. Caramihai, Irina Severin
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques
Procedia PDF Downloads 4211497 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'
Authors: Arwa Alnowaiser, Hala Shoukri
Abstract:
The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.Keywords: artificial intelligence, mental health, AI therapist, website, counseling
Procedia PDF Downloads 451496 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1491495 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application
Authors: Jurijs Salijevs, Katrina Bolocko
Abstract:
The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare
Procedia PDF Downloads 1031494 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 971493 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 861492 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 431491 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 891490 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis
Authors: Olga Leontjeva
Abstract:
In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management
Procedia PDF Downloads 1691489 Indigenizing Social Work Practice: Best Practice of Family Service Agency (LK3) State Islamic University (UIN) Syarif Hidayatullah Jakarta
Authors: Siti Napsiyah, Ismet Firdaus, Lisma Dyawati Fuaida, Ellies Sukmawati
Abstract:
This paper examines the existence, role, and challenge of Family Service Agency, in Bahasa Indonesia known as Lembaga Konsultasi Kesejahteraan Keluarga (LK3) of Syarif Hidayatullah State Islamic University (UIN) Jakarta. It has been established since 2012. It is an official agency under the Ministry of Social Affairs of Indonesia. The establishment of LK3 aims to provide psychosocial services for families of students who has psychosocial problem in their life. The study also aims to explore the trend of psychosocial problems of its client (student) for the past three years (2014-2016). The research method of the study is using a qualitative social work research method. A review of selected data of the client of LK3 UIN Syarif Hidayatullah Jakarta around five main issues: Family background, psychosocial mapping, potential resources, student coping mechanism strategy, client strength and network. The study also uses a review of academic performance report as well as an interview and observation. The findings show that the trend of psychosocial problems of the client of LK3 UIN Syarif Hidayatullah Jakarta vary as follow: bad academic performance, low income family, broken home, domestic violence, disability, mental disorder, sexual abuse, and the like. LK3 UIN Syarif Hidayatullah Jakarta has significant roles to provide psychosocial support and services for the survival of the students to deal with their psychosocial problems. Social worker of LK3 performs indigenous social work practice: individual counseling, family counseling, group therapy, home visit, case conference, Islamic Spiritual Approach, and Spiritual Emotional Freedom Technique (SEPT).Keywords: psychosocial, indigenizing social work, resiliency, coping mechanism
Procedia PDF Downloads 2621488 The Role of Uzbek Music Culture in Tourism
Authors: Odina Omonjonova
Abstract:
The Uzbek people have a rich history and a rapidly developing music culture for several centuries. Monuments, shrines, places of culture and spirituality, which are the most beautiful proofs of history, show that this country has been a center of wisdom since ancient times. Nowadays, Uzbekistan is opening its face to the world with its unique spiritual heritage, historical monuments, peaceful corners and beautiful landscapes. Tourists from many countries visit and get acquainted with Uzbek culture and history and acknowledge it with great respect. The place of traditional music in describing the national color on the world scale is incomparable. Oral folk works that have reached this period, lapar, yalla, songs and ‘Shashmaqom’ are the intangible spiritual wealth of the Uzbek people. They embody the ancient and great history, spiritual world, artistic philosophy, spirit and values of our nation. National music is the main part of the culture of the nation, and here it is worth emphasizing the importance of music in the tourism of Uzbekistan. Foreign guests can enjoy our national music in various ways: (1) Concerts: There are many concert halls and cultural centers in the cities of Uzbekistan, where many concerts and events are held. Well-known musicians, singers and ensembles add more beauty to the beauty of these places, performing musical samples in Shashmaqom and other traditional styles. In these concert programs, tourists will have the opportunity to listen to works of art in an attractive live performance. (2) Festivals: Many music festivals are held in Uzbekistan throughout the year. The ‘Sharq Taronalari’ international music festival is a unique holiday where musicians from all over the world gather to celebrate the diversity of musical traditions. In recent years, traditional music has been played regularly in a number of festivals such as the ‘International Maqom Festival’, ‘International Craft Festival’ and ‘Boysun Bahari’ held in our country, which has increased the attention of travelers to our music culture. (3) Cultural seminars. Tourists interested in hands-on musical experience can participate in musical workshops. These classes allow tourists to learn to play traditional musical instruments and even participate in group activities. (4) Street musicians: In the central places and ancient streets of Uzbekistan's cities, we can meet street musicians playing soulful tunes. Performing and singing folklore samples on modern instruments directly attracts foreign guests. In Uzbekistan, national music and tourism have a direct and indirect connection. Music serves as a bridge between the country's history and its modern identity and enriches the travel experience. The impact of national music on tourism goes beyond mere statistics. Although tourist arrivals have increased significantly due to music-related attractions, the real impact lies in the stories and live testimonies of visitors. Travelers often say that the rhythms of Uzbekistan touched their hearts and broadened their worldview. In addition, music tourism strengthens the country's economy, provides employment, supports local artisans and performers, and provides an opportunity to showcase their talents to a global audience. In short, Uzbekistan is not only a place of interest, but it is among the countries that attract travelers with its unique national music. Uzbek music, folklore, songs, from the wonderful melodies of ‘Shashmaqom’ to the attractive sounds of traditional musical instruments, give aesthetic and spiritual pleasure and are important in organizing a large-scale trip for tourists visiting the country.Keywords: traditional music, folklore, shashmaqom, tourism, festivals, street musicians, traditional musical instruments
Procedia PDF Downloads 391487 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1121486 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1691485 Working Without a Safety Net: Exploring Struggles and Dilemmas Faced by Greek Orthodox Married Clergy Through a Mental Health Lens, in the Australian Context
Authors: Catherine Constantinidis (Nee Tsacalos)
Abstract:
This paper presents one aspect of the larger Masters qualitative study exploring the roles of married Greek Orthodox clergy, the Priest and Presbytera, under the wing of the Greek Orthodox Archdiocese of Australia. This ground breaking research necessitated the creation of primary data within a phenomenological paradigm drawing from lived experiences of the Priests and Presbyteres in contemporary society. As a Social Worker, a bilingual (Greek/English) Mental Health practitioner and a Presbytera, the questions constantly raised and pondered are: Who do the Priest and Presbytera turn to when they experience difficulties or problems? Where do they go for support? What is in place for their emotional and psychological health and well-being? Who cares for the spiritual carer? Who is there to catch our falling clergy and their wives? What is their 'safety net'? Identified phenomena of angst, stress, frustration and confusion experienced by the Priest and (by extension) the Presbytera, within their position, coupled with basic assumptions, perceptions and expectations about their roles, the role of the organisation (the Church), and their role as spouse often caused confusion and in some cases conflict. Unpacking this complex and multi-dimensional relationship highlighted not only the roller coaster of emotions, potentially affecting their physical and mental health, but also the impact on the interwoven relationships of marriage and ministry. The author considers these phenomena in the light of bilingual cultural and religious organisational practice frameworks, specifically the Greek Orthodox Church, whilst filtering these findings through a mental health lens. One could argue that it is an expectation that clergy (and by default their wives) take on the responsibility to be kind, nurturing and supportive to others. However, when it comes to taking care of self, they are not nearly as kind. This research looks at a recurrent theme throughout the interviews where all participants talked about limited support systems and poor self care strategies and the impact this has on their ministry, mental, emotional, and physical health and ultimately on their relationships with self and others. The struggle all participants encountered at some point in their ministry was physical, spiritual and psychological burn out. The overall aim of the researcher is to provide a voice for the Priest and the Presbytera painting a clearer picture of these roles and facilitating an awareness of struggles and dilemmas faced in their ministry. It is hoped these identified gaps in self care strategies and support systems will provide solid foundations for building a culturally sensitive, empathetic and effective support system framework, incorporating the spiritual and psychological well-being of the Priest and Presbytera, a ‘safety net’. A supplementary aim is to inform and guide ministry practice frameworks for clergy, spouses, the church hierarchy and religious organisations on a local and global platform incorporating some sort of self-care system.Keywords: care for the carer, mental health, Priest, Presbytera, religion, support system
Procedia PDF Downloads 3921484 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis
Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr
Abstract:
In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response
Procedia PDF Downloads 7901483 Embodied Spirituality in Gestalt Therapy
Authors: Silvia Alaimo
Abstract:
This lecture brings to our attention the theme of spirituality within Gestalt therapy’s theoretical and clinical perspectives and which is closely connected to the fertile emptiness and creative indifference’ experiences. First of all, the premise that must be done is the overcoming traditional western culture’s philosophical and religious misunderstandings, such as the dicotomy between spirituality and pratical/material daily life, as well as the widespread secular perspective of classic psychology. Even fullness and emptiness have traditionally been associated with the concepts of being and not being. "There is only one way through which we can contact the deepest layers of our existence, rejuvenate our thinking and reach intuition (the harmony of thought and being): inner silence" (Perls) *. Therefore, "fertile void" doesn't mean empty in itself, but rather an useful condition of every creative and responsible act, making room for a deeper dimension close to spirituality. Spirituality concerns questions about the meaning of existence, which lays beyond the concrete and literal dimension, looking for the essence of things, and looking at the value of personal experience. Looking at fundamentals of Gestalt epistemology, phenomenology, aesthetics, and the relationship, we can reach the heart of a therapeutic work that takes spiritual contours and which are based on an embodied (incarnate size), through the relational aesthetic knowledge (Spagnuolo Lobb ), the deep contact with each other, the role of compassion and responsibility, as the patient's recognition criteria (Orange, 2013) rooted in the body. The aesthetic dimension, like the spiritual dimension to which it is often associated, is a subtle dimension: it is the dimension of the essence of things, of their "soul." In clinical practice, it implies that the relationship between therapist and patient is "in the absence of judgment," also called "zero point of creative indifference," expressed by ‘therapeutic mentality’. It consists in following with interest and authentic curiosity where the patient wants to go and support him in his intentionality of contact. It’s a condition of pure and simple awareness, of the full acceptance of "what is," a moment of detachment from one's own life in which one does not take oneself too seriously, a starting point for finding a center of balance and integration that brings to the creative act, to growth, and, as Perls would say, to the excitement and adventure of living.Keywords: spirituality, bodily, embodied aesthetics, phenomenology, relationship
Procedia PDF Downloads 1371482 Visual, Zoological Metaphors and 'Urtiin Duu' (Long Song) in Alshaa, Inner Mongolia
Authors: Oyuna Weina
Abstract:
This study examines how musicians use visual and zoological metaphors for singing technique and voice quality in a genre of traditional music called urtiin duu (‘long song’) in Alshaa, Inner Mongolia, China. Previous studies have discussed melodic contour in Mongol music, but little study of the intersection of singing technique, visual and zoological metaphors has yet been undertaken. The purpose of this study is to address this lack by analysing urtiin duu itself, traditional pedagogy and performances, all of which have been inspired and are assessed by reference to nature and mobile pastoral herding practices. This study investigates the visual and zoological metaphors related to urtiin duu especially colour, the shape of the circle and animals in the Mongol community. Urtiin duu singing is associated with certain colours in song texts, in selection of repertoire and in the status of singers. Musicians also use colour to describe timbre. These colours in turn reference worship of nature, religions, and daily practices of most Mongols in Alshaa. Moreover, voice quality and singing technique are often related to the animals not only in song text but also in the approach to breathing and to melodic contour. Additionally, the concept of boronhoi (‘the shape of circle’), not only is applied to the melodic contour but also to the voice quality and singing technique. These three factors illustrate the connections among nature, spiritual world and everyday herding life of Mongols. These different connections provide evidence of multi-layered meanings. In contemporary Alshaa, urtiin duu singers received Western musical training from the city and returned to their homelands to perform urtiin duu. In doing so, they are also trying to reconnect with the history, nature and spiritual world in order to achieve their ideal sound. Within a multicultural society, singers negotiate amongst themselves, and with ethnic groups, audiences and government officials. The power of the metaphor therefore assists and reconnects the strength of regional identity and ethnic identity in Alshaa.Keywords: Alshaa, urtiin duu, visual, zoological metaphors
Procedia PDF Downloads 3641481 Intellectual Property in Digital Environment
Authors: Balamurugan L.
Abstract:
Artificial intelligence (AI) and its applications in Intellectual Property Rights (IPR) has been significantly growing in recent years. In last couple of years, AI tools for Patent Research and Patent Analytics have been well-stabilized in terms of accuracy of references and representation of identified patent insights. However, AI tools for Patent Prosecution and Patent Litigation are still in the nascent stage and there may be a significant potential if such market is explored further. Our research is primarily focused on identifying potential whitespaces and schematic algorithms to automate the Patent Prosecution and Patent Litigation Process of the Intellectual Property. The schematic algorithms may assist leading AI tool developers, to explore such opportunities in the field of Intellectual Property. Our research is also focused on identification of pitfalls of the AI. For example, Information Security and its impact in IPR, and Potential remediations to sustain the IPR in the digital environment.Keywords: artificial intelligence, patent analytics, patent drafting, patent litigation, patent prosecution, patent research
Procedia PDF Downloads 671480 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 3741479 Investigating the Role of Artificial Intelligence in Developing Creativity in Architecture Education in Egypt: A Case Study of Design Studios
Authors: Ahmed Radwan, Ahmed Abdel Ghaney
Abstract:
This paper delves into the transformative potential of artificial intelligence (AI) in fostering creativity within the domain of architecture education, especially with a specific emphasis on its implications within the Design Studios; the convergence of AI and architectural pedagogy has introduced avenues for redefining the boundaries of creative expression and problem-solving. By harnessing AI-driven tools, students and educators can collaboratively explore a spectrum of design possibilities, stimulate innovative ideation, and engage in multidimensional design processes. This paper investigates the ways in which AI contributes to architectural creativity by facilitating generative design, pattern recognition, virtual reality experiences, and sustainable design optimization. Furthermore, the study examines the balance between AI-enhanced creativity and the preservation of core principles of architectural design/education, ensuring that technology is harnessed to augment rather than replace foundational design skills. Through an exploration of Egypt's architectural heritage and contemporary challenges, this research underscores how AI can synergize with cultural context and historical insights to inspire cutting-edge architectural solutions. By analyzing AI's impact on nurturing creativity among Egyptian architecture students, this paper seeks to contribute to the ongoing discourse on the integration of technology within global architectural education paradigms. It is hoped that this research will guide the thoughtful incorporation of AI in fostering creativity while preserving the authenticity and richness of architectural design education in Egypt and beyond.Keywords: architecture, artificial intelligence, architecture education, Egypt
Procedia PDF Downloads 791478 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study
Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah
Abstract:
This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language
Procedia PDF Downloads 321477 Cognitive and Environmental Factors Affecting Graduate Student Perception of Mathematics
Authors: Juanita Morris
Abstract:
The purpose of this study will examine the mediating relationships between the theories of intelligence, mathematics anxiety, gender stereotype threat, meta-cognition and math performance through the use of eye tracking technology, affecting student perception and problem-solving abilities. The participants will consist of (N=80) female graduate students. Test administered were the Abbreviated Math Anxiety Scale, Tobii Eye Tracking software, gender stereotype threat through Google images, and they will be asked to describe their problem-solving approach allowed to measure metacognition. Participants will be administered mathematics problems while having gender stereotype threat shown to them through online images while being directed to look at the eye tracking software Tobii. We will explore this by asking ‘Is mathematics anxiety associated with the theories of intelligence and gender stereotype threat and how does metacognition and math performance place a role in mediating those perspectives?’. It is hypothesized that math-anxious students are more likely affected by the gender stereotype threat and that may play a role in their performance? Furthermore, we also want to explore whether math anxious students are more likely to be an entity theorist than incremental theorist and whether those who are math anxious will be more likely to be fixated on variables associated with coefficients? Path analysis and independent samples t-test will be used to generate results for this study. We hope to conclude that both the theories of intelligence and metacognition mediate the relationship between mathematics anxiety and gender stereotype threat.Keywords: math anxiety, emotions, affective domains fo learning, cognitive underlinings
Procedia PDF Downloads 2691476 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.Keywords: cognition, world music, artificial intelligence, Thayer’s matrix
Procedia PDF Downloads 811475 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.Keywords: criminal digital evidence, social media, ontologies, reasoning
Procedia PDF Downloads 3881474 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence
Authors: Weber-Lewerenz Bianca
Abstract:
Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation
Procedia PDF Downloads 250