Search results for: marketing analytics
983 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 77982 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 58981 Green Marketing and Sustainable Development: Challenges and Opportunities
Authors: Guru P. S. Rangasamy
Abstract:
In the cutting edge period of globalization, it has turned into a test to keep the clients and also shoppers in overlay and even keep our regular habitat safe and that is the greatest need of the time. Purchasers are likewise mindful of the ecological issues like a dangerous atmospheric deviation and the effect of natural contamination. Green showcasing is a marvel which has created specific critical in the present day advertise and has risen as an imperative idea in India, as in different parts of the creating and created world and is viewed as an essential procedure of encouraging practical improvement. In this exploration paper, primary accentuation has been made of idea, need, and significance of green promoting. It investigates the principle issues in reception of green showcasing hones. The paper portrays the present situation of Indian market and investigates the difficulties and openings organizations have with green advertising, why organizations are receiving it and eventual fate of green promoting and presumes that green showcasing is something that will consistently develop in both practice and request.Keywords: environmental pollution, green marketing, globalization, global warming, sustainable development
Procedia PDF Downloads 291980 Moral Brand Machines: Towards a Conceptual Framework
Authors: Khaled Ibrahim, Mathew Parackal, Damien Mather, Paul Hansen
Abstract:
The integration between marketing and technology has given brands unprecedented opportunities to reach accurate customer data and competence to change customers' behaviour. Technology has generated a transformation within brands from traditional branding to algorithmic branding. However, brands have utilised customer data in non-cognitive programmatic targeting. This algorithmic persuasion may be effective in reaching the targeted audience. But it may encounter a moral conflict simultaneously, as it might not consider our social principles. Moral branding is a critical topic; particularly, with the increasing interest in commercial settings to teaching machines human morals, e.g., autonomous vehicles and chatbots; however, it is understudied in the marketing literature. Therefore, this paper aims to investigate the recent moral branding literature. Furthermore, applying human-like mind theory as initial framing to this paper explores a more comprehensive concept involving human morals, machine behaviour, and branding.Keywords: brand machines, conceptual framework, moral branding, moral machines
Procedia PDF Downloads 167979 Students’ Perception of Careers in Shared Services Industry
Authors: Oksana Koval, Stephen Nabareseh
Abstract:
Talent attraction is identified as a top priority between 2015 – 2020 for Shared Service Centers (SSCs) based on an industry-wide studies. Due to market dynamics and the structure of labour force, shared service industries in Eastern and Central Europe strive for qualified graduates with appropriate and unique skills to occupy such job places. The inbuilt interest and course prescriptions undertaken by prospective job seekers determine whether SSCs will eventually admit such professionals. This paper assesses students’ overall perception of careers in the shared services industry and further diagnosis gender impact and influence on the job preferences among students. Questionnaires were distributed among students in the Czech Republic universities using an online mode. Respondents vary by study year, gender, age, course of study, and work preferences. A total of 1283 student responses has been analyzed using Stata data analytics software. It was discovered that over 70% of respondents who are aware of SSCs are quite ignorant of the job opportunities offered by the centers. While majority of respondents are interested in support positions (e.g. procurement specialist, planning specialist, human resource specialist, process improvement specialist and payroll specialist, etc.), around a third of respondents (32.8 percent) will decline a job offer from SSCs. The analysis also revealed that males are more likely than females to seek careers in international companies, hence, tend to be more favorable towards shared service jobs. Females, however, have stronger preferences towards marketing and PR jobs. The research results provide insights into the job aspirations of students interviewed. The findings provide a huge resource for recruitment agencies and shared service industries to renew and redirect their search for talents into SSCs. Based on the fact that great portion of respondents are planning to start their career within 6-12 months, the research provides important highlights for the talent attraction and recruitment strategies in the industry and provides a curriculum direction in academia.Keywords: Czech Republic labour market, gender, talent attraction, shared service centers, students
Procedia PDF Downloads 236978 Marketing Planning Strategy to Promote Family Agro-Tourism: A Case Study of Bang Nam Phueng Community Prapradeang District, Samutprakarn Province
Authors: Sasitorn Chetanont, Benjaporn Yamjameung
Abstract:
The objectives of this study are to increase tourism products and to develop family agro-tourism. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles. The results of this study highlight following necessary improvements; extend the cycling routes, increase the number of bicycle rental shops, offer a recreation place for the elders, organize a space for the floating market products and increase tourism activities throughout the year. In ‘places or distribution channel’ we discuss the improvement of facilities, specifically the routes to facilitate elder visitors and visitors on wheelchairs and furthermore the arrangement of educational trips to relevant centers in the community. In ‘promotions’, we discuss the implementation of an 'all inclusive package' were the agro-tourism program, health-conscious program and the elderly fun program converge.Keywords: marketing planning strategy, agro-tourism, promotions, Bang Nam Phueng
Procedia PDF Downloads 313977 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak
Authors: Asim Majeed, Anwar Ul Haq, Ayesha Asim, Mike Lloyd-Williams, Arshad Jamal, Usman Butt
Abstract:
This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.Keywords: Digital, communities, performance, dissemination, implications, data, exploitation
Procedia PDF Downloads 406976 Challenges in E-Government: Conceptual Views and Solutions
Authors: Rasim Alguliev, Farhad Yusifov
Abstract:
Considering the international experience, conceptual and architectural principles of forming of electron government are researched and some suggestions were made. The assessment of monitoring of forming processes of electron government, intellectual analysis of web-resources, provision of information security, electron democracy problems were researched, conceptual approaches were suggested. By taking into consideration main principles of electron government theory, important research directions were specified.Keywords: electron government, public administration, information security, web-analytics, social networks, data mining
Procedia PDF Downloads 479975 Consumer Behavior in Buying Organic Product: A Case Study of Consumer in the Bangkok Metropolits and Vicinity
Authors: Piluntana Panpluem, Monticha Putsakum
Abstract:
The objectives of this study were to investigate 1) consumers’ behaviors in buying organic products; and 2) the relationships between personal factors, cultural factors, social factors, psychological factors and marketing mix factors, and the behavior in buying organic products of consumers in the greater Bangkok metropolitan area. The sample group was 400 consumers at the age of 15 and older, who bought organic agricultural products from green markets and green shops in Bangkok, including its suburbs. The data were collected by using a questionnaire, which were analyzed by descriptive statistics and chi-square test. The results showed that the consumers bought 3 – 4 types of fresh vegetables with a total expenditure of less than 499 Baht each time. They purchased organic products mainly at a supermarket, 2 – 4 times per month, most frequently on Sundays, which took less than 30 minutes of shopping each time. The purpose of the purchase was for self-consuming. Gaining or retaining good health was the reason for the consumption of the products. Additionally, the first considered factor in the organic product selection was the quality. The decisions in purchasing the products were made directly by consumers, who were influenced mainly by advertising media on television. For the relationships among personal, cultural, social, psychological and marketing mix factors, and consumers’ behavior in buying organic products, the results showed the following: 1) personal factors, which were gender, age and educational level, were related to the behavior in terms of “What”, “Why”, and “Where” the consumers bought organic products (p<0.05); 2) cultural factors were related to “Why” the consumers bought organic products (p<0.05); 3) social factors were related to “Where” and “How” the consumers bought organic products (p<0.05); 4) psychological factors were related to “When” the consumers bought organic products (p<0.05). 5) For the marketing mix factors, “Product” was related to “Who participated” in buying, “What” and “Where” the consumers bought organic products (p<0.05), while “Price” was related to “What” and “When” the consumers bought organic products (p<0.05). “Place” was related to “What” and “How” the consumers bought organic products (p<0.05). Furthermore, “Promotion” was related to “What” and “Where” the consumers bought organic products (p<0.05).Keywords: consumer behavior, organic products, Bangkok Metropolis and Vicinity
Procedia PDF Downloads 288974 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences
Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson
Abstract:
This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.Keywords: data-driven, improvement, online courses, faculty development, analytics, course design
Procedia PDF Downloads 64973 Enhancing Operational Efficiency and Patient Care at Johns Hopkins Aramco Healthcare through a Business Intelligence Framework
Authors: Muneera Mohammed Al-Dossary, Fatimah Mohammed Al-Dossary, Mashael Al-Shahrani, Amal Al-Tammemi
Abstract:
Johns Hopkins Aramco Healthcare (JAHA), a joint venture between Saudi Aramco and Johns Hopkins Medicine, delivers comprehensive healthcare services to a diverse patient population. Despite achieving high patient satisfaction rates and surpassing several operational targets, JAHA faces challenges such as appointment delays and resource inefficiencies. These issues highlight the need for an advanced, integrated approach to operational management. This paper proposes a Business Intelligence (BI) framework to address these challenges, leveraging tools such as Epic electronic health records and Tableau dashboards. The framework focuses on data integration, real-time monitoring, and predictive analytics to streamline operations and enhance decision-making. Key outcomes include reduced wait times (e.g., a 23% reduction in specialty clinic wait times) and improved operating room efficiency (from 95.83% to 98% completion rates). These advancements align with JAHA’s strategic objectives of optimizing resource utilization and delivering superior patient care. The findings underscore the transformative potential of BI in healthcare, enabling a shift from reactive to proactive operations management. The success of this implementation lays the foundation for future innovations, including machine learning models for more precise demand forecasting and resource allocation.Keywords: business intelligence, operational efficiency, healthcare management, predictive analytics, patient care improvement, data integration, real-time monitoring, resource optimization, Johns Hopkins Aramco Healthcare, electronic health records, Tableau dashboards, predictive modeling, efficiency metrics, resource utilization, patient satisfaction
Procedia PDF Downloads 19972 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe
Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis
Abstract:
The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.Keywords: Terrain Builder, WebGL, Virtual Globe, CesiumJS, Tiled Map Service, TMS, Height-Map, Regular Grid, Geovisual Analytics, DTM
Procedia PDF Downloads 430971 Trip Reduction in Turbo Machinery
Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto
Abstract:
Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBTKeywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start
Procedia PDF Downloads 81970 A Case Study: Social Network Analysis of Construction Design Teams
Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen
Abstract:
Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics
Procedia PDF Downloads 203969 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry
Authors: Harneet Walia, Morteza Zihayat
Abstract:
Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis
Procedia PDF Downloads 128968 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 39967 Community Participation for Sustainable Development Tourism in Bang Noi Floating Market, Bangkonti District, Samutsongkhram Province
Authors: Bua Srikos, Phusit Phukamchanoad
Abstract:
The purpose is to study the model and characteristic of participation of the suitable community to lead to develop permanent water marketing in Bang Noi Floating Market, Bangkonti District, Samutsongkhram Province. A total of 342 survey questionnaires were administered to potential respondents. The researchers interviewed the leader of the community. Appreciation Influence Control (AIC) was used to talk with 20 villagers on arena. The findings revealed that overall, most people had the middle level of the participation in developing the durable Bang Noi Floating Market, Bangkonti, Samutsongkhram Province and in aspects of gaining benefits from developing it with atmosphere and a beautiful view for tourism. For example, the landscape is beautiful with public utilities. The participation in preserving and developing Bang Noi Floating Market remains in the former way of life. The basic factor of person affects to the participation of people such as age, level of education, career, and income per month. Most participants are the original hosts that have houses and shops located in the marketing and neighbor. These people involve with the benefits and have the power to make a water marketing strategy, the major role to set the information database. It also found that the leader and the villagers play the important role in setting a five-physical database. Data include level of information such as position of village, territory of village, road, river, and premises. Information of culture consists of a two-level of information, interesting point, and Itinerary. The information occurs from presenting and practicing by the leader and villagers in the community.All of phases are presented for listening and investigating database together in both the leader and villagers in the process of participation.Keywords: participation, community, sustainable development, encouragement, tourism
Procedia PDF Downloads 354966 The Use of Social Media by Companies Operating on the Polish Market in the Context of the Corporate Reputation Management
Authors: Danuta Szwajca
Abstract:
Reputation The exponential growth of the Internet and social media (SM) in the recent years has contributed to changing the communication environment, in which stakeholders: customers, investors, business partners, employees, like their users, may post and distribute their opinions about the company and its products. This generates a number of potential threats to the image and reputation of both people and organizations. Social media create new opportunities not only for rapid and interactive communication but also for organizing themselves into strong pressure groups which may effectively affect the decisions of various organized bodies. Companies cannot ignore this fact and should use SM not only as an additional communication marketing channel but in a broader context - as a tool to build and protect their reputation. This article aims to identify the extent, scope, and directions of the use of SM in the activities of companies operating in the Polish market, as well as to identify threats and opportunities generated by the media in the area of reputation management. The results of research presented in the article showed that Polish companies recognize the potential of SM and try to apply them in their marketing efforts. However, his activity is limited only to maintain communication with customers through two portals: Facebook and Twitter. In the approach to the SM as a communication channel, the traditional way of thinking dominates, in which they are treated as just another promotional tool used by two departments: marketing and PR. This approach is called "silo" and is not integrated. This way of using SM does not allow effective building and protecting reputation in the Internet environment. To achieve this goal, the following research methods were used: the critical analysis of literature, analysis of secondary sources in a form of the report from the research conducted by Harvard Business Review Poland together with Capgemini Poland and case study.Keywords: corporate reputation, reputation management, social media, risk reputation
Procedia PDF Downloads 199965 The Marketing Development of Cloth Products Woven in Krasaesin, Songkhla Province
Authors: Auntika Thipjumnong
Abstract:
This research study aimed to investigate the production process and the market target of Kraseasin’s woven cloth including the customers’ behaviors towards the local woven products. The suggestions of a better process of production were recommended in this study. This survey research was conducted by using a questionnaire and interview, which were considered as the practical instruments to collect the data. The 200 Kraseasin’s woven makers and consumers were subjects by using a purposive sampling. Percentages, means and standard deviation were used to analyze data. The findings revealed that only 22 local woven members owned their 18 manual weavers in producing the raw materials like cotton or fiber. The main products were flowery woven cloth e.g. pikul, puangchompoo, pakakrong and ban mai roo roiy, and the others were rainy, glass wall, dice glass ball and yok dok etc. At the present, all local woven products were applied to be modernized but the strong point of those products were keeping the quality standard and firming textures, not thickness. The main objective of producing these local woven products was to earn and increase their extra incomes. Moreover, there were two dominant sales: Firstly, the makers sold their own products by themselves in their community and malls; and secondly, they would weave their products by customers’ orders. The prices’ allocation was on the difficulties in producing process. The government officials and non-government officials in local were normally customers. However the drawback of producing this local product was lack of raw material and this brought about the higher investment. The community’s customers were now lacking of interest in wearing these local products, even though they maintained their quality standard. The factors in customers’ purchasing decision were product (M = 3.93), price (M = 3.74), distribution (M = 3.73) and promotion (M = 3.97) for marketing mix well-known. Suggestion was a designing pattern of products had to be matched to the customers’ needs.Keywords: marketing, consumer behavior, cloth products weaves, Songkhla Thailand
Procedia PDF Downloads 289964 Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits
Authors: Andre M. Carvalho, Pedro Sebastiao
Abstract:
This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization.Keywords: engage, games, gamification, randomness, stochastic processes
Procedia PDF Downloads 334963 A Review of Technology Roadmaps for Commercialization of Solar Photovoltaic Energy Systems
Authors: Muhammad Usman Sardar, Muhammad Haroon Nadeem, Shahbaz Ahmad, Ashiq Hussain
Abstract:
The marketing of solar photovoltaic energy systems has one of the monetary settlements to address the higher rate to pay in advance with the purchase of two decades worth of electricity services. To deploy solar photovoltaic technologies and energy setups in areas, it’s important to create a system of credit that can ensure the availability of subsidized capital and commercial conditions for the society. Meanings of energy in developing countries like Pakistan were strongly prompted by marketable interests and industrialization trend influences within their culture. It’s going to be essential to prepare the concerned proceeding models of energy development strategies. This paper discuss the impact and share of environmental friendly solar photo-voltaic energy, researching to find the most appropriate alternate solutions for balance the energy demand and supply and current progressive position in different countries regarding to development and deployment. Based on the literature reviews, its presence found that most beneficial and concerning policies have implemented in several countries around the globe.Keywords: photovoltaic marketing and pricing, renewable energy technology, solar photovoltaic, SPV
Procedia PDF Downloads 393962 Antecedents of MNE Performance and Managing Firm-Specific and Country-Specific Advantages: An Empirical Study of Optoelectronics Industry in Taiwan
Authors: Jyh-Yi Shih, Chie-Bein Chen, Kuang-Yi Lin, Yu-Wei Huang
Abstract:
Because of the trend toward globalization, Taiwanese companies have gradually focused more on overseas market operations. Overseas market performance has gradually increased as a proportion of Taiwanese companies’ total business revenues. Existing international investment theories cannot explain numerous new phenomena in this domain. Opinions are inconsistent, and contradictory positions exist regarding the antecedents of multinational enterprise (MNE) performance. This study applied contemporary internalization theory to establish and extend approaches adopted by previous relevant studies. In the context of the overseas market, the influence that MNE investment in research and development (R&D) and marketing has on enterprise performance was investigated from the firm-specific advantages (FSAs) and country-specific advantages (CSAs) perspectives. CSAs and internationalization speed were addressed as moderators, and hypotheses regarding how internationalization and performance were achieved through MNE overseas market operation were explored to ensure the completeness of the investigation. The list of enterprises was sourced from the Taiwan Economic Journal. After examining the relevant data, the following conclusions were obtained: (a) The relationship between the level of FSAs in R&D and enterprise performance exhibited an S-shaped curve. (b) The relationship between the level of FSAs in marketing and enterprise performance displayed a U-shaped curve. (c) The extent to which potential CFAs were obtained positively moderated the relationship between enterprise investment in R&D to gain FSAs and MNE performance. (d) Internationalization speed positively moderated the relationship between MNEs and enterprise investment in R&D and marketing to gain FSAs.Keywords: multinational corporation, firm-specific advantages, country-specific advantages, international speed
Procedia PDF Downloads 400961 Challenges and Prospects of Small and Medium Scale Enterprises in Somolu Local Government Area
Authors: A. A. Akharayi, B. E. Anjola
Abstract:
The economic development of a country depends greatly on internally built revenue. Small and Medium-scale Enterprise (SMEs) contributes to the economic buoyancy as it provides employment for the teeming population, encourages job creation by youths who believes in themselves and also by others who have gathered finance enough to invest in growable investment. SMEs is faced with several challenges. The study investigates the role and challenges of SMEs Somolu Local Government Area. Simple random sampling techniques were used to select entrepreneurs (SMEs owners and managers). One hundred and fifty (150) registered SMEs were selected across the LGA data collection with the use of well-structured questionnaire. The data collected were analysed using Statistical Package for Social Science (SPSS) version 21. The result of the analysis indicated that marketing, finance, social facilities and indiscriminate taxes among other high level of fund available significantly (p <0 .05) increase firm capacity while marketing showed a significant (p < 0.05) relationship with profit level.Keywords: challenge, development, economic, small and medium scale enterprise
Procedia PDF Downloads 246960 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 33959 An Investigative Study on the Use of Online Marketing Methods in Hungary
Authors: E. Happ, Zs. Ivancsone Horvath
Abstract:
With the development of the information technology, IT, sector, all industry of the world has a new path, dealing with digitalisation. Tourism is the most rapidly increasing industry in the world. Without digitalisation, tourism operators would not be competitive enough with foreign destinations or other experience-based service providers. Digitalisation is also necessary to enable organizations, which are interested in tourism to meet the growing expectations of consumers. With the help of digitalisation, tourism providers can also obtain information about tourists, changes in consumer behaviour, and the use of online services. The degree of digitalisation in tourism is different for different services. The research is based on a questionnaire survey conducted in 2018 in Hungary. The sample with more than 500 respondents was processed by the SPSS program, using a variety of analysis methods. The following two variables were observed from more aspects: frequency of travel and the importance of services related to online travel. With the help of these variables, a cluster analysis was performed among the participants. The sample can be divided into two groups using K-mean cluster analysis. Cluster ‘1’ is a positive group; they can be called the “most digital tourists.” They agree in most things, with low standard deviation, and for them, digitalisation is a starting point. To the members of Cluster ‘2’, digitalisation is important, too. The results show what is important (accommodation, information gathering) to them, but also what they are not interested in at all within the digital world (e.g., car rental or online sharing). Interestingly, there is no third negative cluster. This result (that there is no result) proves that tourism uses digitalisation, and the question is only the extent of the use of online tools and methods. With the help of the designed consumer groups, the characteristics of digital tourism segments can be identified. The help of different variables characterised these groups. One of them is the frequency of travel, where there is a significant correlation between travel frequency and cluster membership. The shift is clear towards Cluster ‘1’, which means, those who find services related to online travel more important, are more likely to travel as well. By learning more about digital tourists’ consumer behaviour, the results of this research can help the providers in what kind of marketing tools could be used to influence the consumer choices of the different consumer groups created using digital devices, furthermore how to conduct more detailed and effective marketing activities. The main finding of the research was that most of the people have digital tools which are important to be able to participate in e-tourism. Of these, mobile devices are increasingly preferred. That means the challenge for service providers is no longer the digital presence but having optimised application for different devices.Keywords: cluster analysis, digital tourism, marketing tool, tourist behaviour
Procedia PDF Downloads 131958 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 132957 Market Value of Ethno-Medicinally Important Plants of the Dughalgay Valley District Swat, Pakistan
Authors: Akbar Zeb, Shujaul Mulk Khan, Habib Ahmad, Manzoor Hussain, Mujtaba Shah
Abstract:
An ethnobotanical project was carried out in the Dughalgay valley District Swat in Hindu Kush region. The Local population not only use indigenous knowledge to use medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local markets. An ethnobotanical project was carried out in the Doghalgay valley of upper Swat. The Local population not only use indigenous medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local market. 102 of these medicinal plants were reported to be used in the region during questionnaire survey in spring 2007. Out of them 10 species are used as diuretic, 9 in stomachic and laxative each. Similarly 6, 5, 5, 4, 4, and 4 species of them are used as antiseptic, Anthelmintic, Carminative, Expectorant, Astringent and purgative respectively, while the remaining species have one or more than one medicinal use in the local community. 30 of these species are collected for marketing purposes, in which these medicinal plants such as Berberis lycium, Origanum vulgare, Bergenia ciliata, Aesculus indica, Podophyllum emodi, Pteredium aquilinum, Bergenia himalyca, Viola spp., Ajuga bracteosa, Morchella esculenta, Paeonia emodi, Atropa acuminate, Aconitum violaceum, Polygonum amplexicaulis, Bupleurum longicaule, Juglans regia, Diospyrus lotus, and Mentha longifolia are important. Study concluded that availability of medicinal plants is decreasing day by day due to human population pressure, marketing pressure, grazing and unwise collection. Therefore it is recommended that Governmental organizations and non Governmental organization should pay possible attention to make aware the local people about the future threats.Keywords: indigenous knowledge, ethnomedicinal uses, marketing, Hindu Kush
Procedia PDF Downloads 505956 The Impacts of Digital Marketing Activities on Customers' Purchase Intention via Brand Reputation and Awareness: Empirical Study
Authors: Radwan Al Dwairi, Sara Melhem
Abstract:
Today’s billions of individuals are linked together in real-time using different types of social platforms. Despite the increasing importance of social media marketing activities in enhancing customers’ intention to purchase online; still, the majority of research has concentrated on the impact of such tools on customer satisfaction or retention and neglecting its real role in enhancing brand reputation and awareness, which in turn impact customers’ intention to purchase online. In response, this study aims to close this gap by conducting an empirical study using a qualitative approach by collecting a sample of data from 216 respondents in this domain. Results of the study reveal the significant impact of word-of-mouth, interactions, and influencers on a brand reputation, where the latter positively and significantly impacted customers’ intention to purchase via social platforms. In addition, results show the significant impact of brand reputation on enhancing customers' purchase intention.Keywords: brand awareness, brand reputation, EWOM, influencers, interaction
Procedia PDF Downloads 100955 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices
Authors: Nathakhun Wiroonsri
Abstract:
There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition
Procedia PDF Downloads 106954 The Impact of Innovation Catalog of Products to Achieve the Fulfillment of Customers
Authors: Azzi Mohammed Amin
Abstract:
The study aimed to measure the impact of the product for its size marketing innovation (the development of existing products, innovation of new products) in achieving customer loyalty from the perspective of a sample of consumers brand (Omar Ben Omar) food in the state of Biskra, and also measure the degree of customer loyalty to the brand. To achieve the objectives of the study, designed a form and distributed to a random sample of 280 consumers of the brand, has been relying on SPSS to analyze the results, the study revealed several findings; There is a strong customer loyalty to Omar bin Omar products. The presence of the impact of product innovation (development of existing products, the innovation of new products) on customer loyalty, with a Pearson correlation coefficient of 0.74 is a strong relationship. The presence of a statistically significant effect for the development of existing products in customer loyalty. The presence of a statistically significant effect for the innovation of new products to customer loyalty.Keywords: marketing innovation, product innovation, customer loyalty, products
Procedia PDF Downloads 534