Search results for: machine resistance training
9098 Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students
Authors: Daniel Botero, Oscar Rubiano, Pedro P. Barragan, Jaime Baron, Leonardo Rodriguez Perdomo, Jaime Rodriguez
Abstract:
In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes.Keywords: autonomic nervous, force training, indoor cycling, interval training
Procedia PDF Downloads 2259097 Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men
Authors: Farshad Ghazalian, Laleh Hakemi, Lotfali Pourkazemi, Maryam Ameri, Seyed Hossein Alavi
Abstract:
Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles.Keywords: long term, body, vibration training, lipid
Procedia PDF Downloads 4199096 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 799095 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution
Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim
Abstract:
Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion
Procedia PDF Downloads 6599094 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 949093 Understanding the Thermal Resistance of Active Dry Yeast by Differential Scanning Calorimetry Approach
Authors: Pauline Ribert, Gaelle Roudaut, Sebastien Dupont, Laurent Beney
Abstract:
Yeasts, anhydrobiotic organisms, can survive extreme water disturbances, thanks to the prolonged and reversible suspension of their cellular activity as well as the establishment of a defense arsenal. This property is exploited by many industrialists. One of the protection systems implemented by yeast is the vitrification of its cytoplasm by trehalose. The thermal resistance of dry yeasts is a crucial parameter for their use. However, studies on the thermal resistance of dry yeasts are often based on yeasts produced in laboratory conditions with non-optimal drying processes. We, therefore, propose a study on the thermal resistance of industrial dry yeasts in relation to their thermophysical properties. Heat stress was applied at three temperatures (50, 75, and 100°C) for 10, 30, or 60-minute treatments. The survival of yeasts to these treatments was estimated, and their thermophysical properties were studied by differential scanning calorimetry. The industrial dry yeasts resisted 60 minutes at 50°C and 75°C and 10 minutes at a temperature close to 100°C. At 100°C, yeast was above their glass transition temperature. Industrial dry yeasts are therefore capable of withstanding high thermal stress if maintained in a specific thermophysical state.Keywords: dry yeast, glass transition, thermal resistance, vitrification
Procedia PDF Downloads 1519092 Phylogenetic Diversity and Antibiotic Resistance in Sediments of Aegean Sea
Authors: Ilknur Tuncer, Nihayet Bizsel
Abstract:
The studies in bacterial diversity and antimicrobial resistance in coastal areas are important to understand the variability in the community structures and metabolic activities. In the present study, antimicrobial susceptibility and phylogenetic analysis of bacteria isolated from stations with different depths and influenced by terrestrial and marine fluxes in eastern Aegean Sea were illustrated. 51% of the isolates were found as resistant and 14% showed high MAR index indicating the high-risk sources of contamination in the environment. The resistance and the intermediate levels and high MAR index of the study area were 38–60%, 11–38% and 0–40%, respectively. According to 16S rRNA gene analysis, it was found that the isolates belonged to two phyla Firmicutes and Gammaproteobacteria with the genera Bacillus, Halomonas, Oceanobacillus, Photobacterium, Pseudoalteromonas, Psychrobacter, and Vibrio. 47% of Bacillus strains which were dominant among all isolates were resistant. In addition to phylogenetically diverse bacteria, the variability in resistance, intermediate and high MAR index levels of the study area indicated the effect of geographical differences.Keywords: bacterial diversity, multiple antibiotic resistance, 16S rRNA genes, Aegean Sea
Procedia PDF Downloads 4129091 Optimization of a Flux Switching Permanent Magnet Machine Using Laminated Segmented Rotor
Authors: Seyedmilad Kazemisangdehi, Seyedmehdi Kazemisangdehi
Abstract:
Flux switching permanent magnet machines are considered for wide range of applications because of their outstanding merits including high torque/power densities, high efficiency, simple and robust rotor structure. Therefore, several topologies have been proposed like the PM exited flux switching machine, hybrid excited flux switching type, and so on. Recently, a novel laminated segmented rotor flux switching permanent magnet machine was introduced. It features flux barriers on rotor structure to enhance the performances of machine including torque ripple reduction and also torque and efficiency improvements at the same time. This is while, the design of barriers was not optimized by the authors. Therefore, in this paper three coefficients regarding the position of the barriers are considered for optimization. The effect of each coefficient on the performance of this machine is investigated by finite element method and finally an optimized design of flux barriers based on these three coefficients is proposed from different points of view including electromagnetic torque maximization and cogging torque/torque ripple minimization. At optimum design from maximum developed torque aspect, this machine generates 0.65 Nm torque higher than that of the not-optimized design with an almost 0.4 % improvement in efficiency.Keywords: finite element analysis, FSPM, laminated segmented rotor flux switching permanent magnet machine, optimization
Procedia PDF Downloads 2309090 Literature Review: Adversarial Machine Learning Defense in Malware Detection
Authors: Leidy M. Aldana, Jorge E. Camargo
Abstract:
Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.Keywords: Malware, adversarial, machine learning, defense, attack
Procedia PDF Downloads 639089 Comparing the Efficacy of Minimally Supervised Home-Based and Closely Supervised Gym Based Exercise Programs on Weight Reduction and Insulin Resistance after Bariatric Surgery
Authors: Haleh Dadgostar, Sara Kaviani, Hanieh Adib, Ali Mazaherinezhad, Masoud Solaymani-Dodaran, Fahimeh Soheilipour, Abdolreza Pazouki
Abstract:
Background and Objectives: Effectiveness of various exercise protocols in weight reduction after bariatric surgery has not been sufficiently explored in the literature. We compared the effect of minimally supervised home-based and closely supervised Gym based exercise programs on weight reduction and insulin resistance after bariatric surgery. Methods: Women undergoing gastric bypass surgery were invited to participate in an exercise program and were randomly allocated into two groups. They were either offered a minimally supervised home-based (MSHB) or closely supervised Gym-based (CSGB) exercise program. The CSGB protocol constitute two sessions per week of training under ACSM guidelines. In the MSHB protocol participants received a notebook containing a list of recommended aerobic and resistance exercises, a log to record their activity and a schedule of follow up phone calls and clinic visits. Both groups received a pedometer. We measured their weight, BMI, lipid profile, FBS, and insulin level at the baseline and after 20 weeks of exercise and were compared at the end of the study. Results: A total of 80 patients completed our study (MSHB=38 and CSGB=42). The baseline comparison showed that the two groups are similar. Using the ANCOVA method of analysis the mean change in BMI (covariate: BMI at the beginning of the study) was slightly better in CSGB compared with the MSHB (between-group mean difference: 3.33 (95%CI 4.718 to 1.943, F: 22.844 p < 0.001)). Conclusion: Our results showed that both MSHB and CSGB exercise methods are somewhat equally effective in improvement of studied factors in the two groups. With considerably lower costs of Minimally Supervised Home Based exercise programs, these methods should be considered when adequate funding are not available.Keywords: postoperative exercise, insulin resistance, bariatric surgery, morbid obesity
Procedia PDF Downloads 2899088 Spectrum of Causative Pathogens and Resistance Rates to Antibacterial Agents in Bacterial Prostatitis
Authors: kamran Bhatti
Abstract:
Objective: To evaluate spectrum and resistance rates to antibacterial agents in causative pathogens of bacterial prostatitis in patients from Southern Europe, the Middle East, and Africa. Materials: 1027 isolates from cultures of urine or expressed prostatic secretion, post-massage urine or seminal fluid, or urethral samples were considered. Results: Escherichia coli (32%) and Enterococcus spp. (21%) were the most common isolates. Other Gram-negative, Gram-positive, and atypical pathogens accounted for 22%, 20%, and 5%, respectively. Resistance was <15% for piperacillin/tazobactam and carbapenems (both Gram-negative and -positive pathogens); <5% for glycopeptides against Gram-positive; 7%, 14%, and 20% for aminoglycosides, fosfomycin, and macrolides against Gram-negative pathogens, respectively; 10% for amoxicillin/clavulanate against Gram-positive pathogens; <20% for cephalosporins and fluoroquinolones against to Gram-negative pathogens (higher against Gram-positive pathogens); none for macrolides against atypical pathogens, but 20% and 27% for fluoroquinolones and tetracyclines. In West Africa, the resistance rates were generally higher, although the highest rates for ampicillin, cephalosporins, and fluoroquinolones were observed in the Gulf area. Lower rates were observed in Southeastern Europe. Conclusions: Resistance to antibiotics is a health problem requiring local health authorities to combat this phenomenon. Knowledge of the spectrum of pathogens and antibiotic resistance rates is crucial to assess local guidelines for the treatment of prostatitis.Keywords: enterobacteriacae; escherichia coli, gram-positive pathogens, antibiotic, bacterial prostatitis, resistance
Procedia PDF Downloads 649087 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 1829086 The Powerful of Training; Development and Compensation; Rewards in Sustaining SME’s Performance
Authors: Mohd Fitri Mansor, Noor Hidayah Abu, Hussen Nasir
Abstract:
Human capital is one of valuable assets to the organization in order to sustain organization performance and to achieve both employees and employer objectives. The aim of the study is to examine the powerful of both Human Resource practices (i.e. Training & Development and Compensation & Rewards) towards sustaining SME’s performance. The objectives of the current study are to examine the relationship between training and development as well as compensation and rewards in sustaining Malaysian SME’s performance. Finally, is to identify the strongest variable contribute to the sustainability of SMEs performance. The result from 80 Malaysian SME’s owners found that both variables training & development and compensation & rewards significantly contributes to the sustainability of SME,s performance. Meanwhile, the strongest variable contributes to the sustainability of SMEs performance was training and development. The study contributes to the knowledge and awareness to the SME’s owners an important or the powerful of human resource practices in sustaining their organization performance.Keywords: training and development, compensation and rewards, sustainability, SME’s performance
Procedia PDF Downloads 4809085 Thermal and Mechanical Finite Element Analysis of a Mineral Casting Machine Frame
Abstract:
Thermal distortion of the machine tool plays a critical role in its machining accuracy. This study investigates the thermal performance of a high-precision machine frame with future-oriented mineral casting components. A thermo-mechanical finite element model (FEM) was established to evaluate the thermal behavior of the frame under environmental thermal fluctuations. The validity of the presented FEM model was confirmed experimentally by a series of laser interferometer tests. Good agreement between numerical and experimental results demonstrates that the proposed model can accurately predict the thermal deformation of the frame with thermo-mechanical coupling effect. The results also show that keeping the workshop in thermally stable conditions is crucial for improving the machine accuracy of the system with large scale components. The goal of this paper is to investigate the feasibility of innovative mineral casting material applied in high-precision drilling machine and to provide a strategy for machine tool industry seeking a perfect substitute for classic frame materials such as cast iron and granite.Keywords: thermo-mechanical model, finite element method, laser interferometer, mineral casting frame
Procedia PDF Downloads 3039084 Identification of Quantitative Trait Loci Conferring Downy Mildew Resistance in Cucumis sativus
Authors: Pawinee Innark, Hudsaya Punyanitikul, Chanuluk Khanobdee, Chatchawan Jantasuriyarat, Sompid Samipak
Abstract:
One of the most devastating diseases in cucumber is downy mildew caused by the fungus Pseudoperonospora cubensis. To enable the use of marker-assisted breeding for resistance cultivars, sixty six microsatellite markers were used to map (quantitative trait loci) QTLs for DM resistance. Total of 315 F2 population from the cross between DM-resistant inbred line CSL0067 and susceptible CSL0139 were evaluated for downy mildew resistance in cotyledon, first and second true leaf at 7, 10, and 14 day after inoculation. The QTL analysis revealed that the downy mildew resistant genes were controlled by multiple recessive genes. From eight linkage groups (LG 1.1, 1.2, 2, 3, 4, 5.1, 5.2 and 6), fourteen QTL positions were detected on 4 linkage groups (LG 1.1, 2, 5.1 and 6) with the log of odd scores ranged from 3.538 to 9.165. Among them, Cot7_5.1_2 and Cot10_5.1 had major-effect QTL with the R2 values of 10.9 and 12.5%, respectively. The flanking markers for Cot7_5.1_2 were SSR19172 - SSR07531 markers and for Cot10_5.1 were SSR03943 - SSR00772. Besides QTLs on chromosome 1, 5 and 6 that were previously reported, this study also revealed a QTL for DM resistance on chromosome 2 that can be used as a new source in cucumber breeding program.Keywords: cucumber, DNA marker, downy mildew, QTL
Procedia PDF Downloads 2489083 Prevalence and Antibiotic Resistance Patterns of Salmonella from Retail Dressed Chickens (Gallus gallus domesticus) in Wet Markets of Cavite, Philippines
Authors: Chester Joshua V. Saldana, Yolanda A. Ilagan
Abstract:
This study determines the prevalence of Salmonella from retail dressed chickens using chicken wings as samples in five wet city markets of Cavite, Philippines, compares the prevalence among the markets' samples and determines the serotypes and antibiotic resistance pattern of Salmonella isolates. The overall prevalence of Salmonella in five wet markets in Cavite was 13.33 percent. Samples from Bacoor yielded the highest prevalence rate of 26.6 percent, followed by Imus (23.3%), Dasmarinas (11.6%), Trece Martires (3.3%) and Tagaytay (1.6%). Seven serotypes (serogroups B, C2, C3, D1 and E1) were isolated which include Salmonella weltevreden, S. derby, S. newport, S. albany, S. typhimurium, and S. enteritidis. Salmonella weltevreden was the predominant serotype while S. typhi and S. albany were the least common. Among the 15 antibiotics tested, resistance to ampicillin, tetracycline, and cephalexin was exhibited by all the isolates while 5 percent showed resistance to gentamicin, 2.5 percent to streptomycin and 12.5 percent to nitrofurantoin. One isolate was resistant to four antibiotics whereas most isolates of S. enteritidis were resistant to 2 to 5 antibiotics. Four resistance patterns were recorded. This study revealed the emergence of multidrug-resistant Salmonella serotypes from chicken meat in Cavite, Philippines.Keywords: antibiotics, dressed chickens, resistance patterns, Salmonella serovars
Procedia PDF Downloads 3309082 Learning the C-A-Bs: Resuscitation Training at Rwanda Military Hospital
Authors: Kathryn Norgang, Sarah Howrath, Auni Idi Muhire, Pacifique Umubyeyi
Abstract:
Description : A group of nurses address the shortage of trained staff to respond to critical patients at Rwanda Military Hospital (RMH) by developing a training program and a resuscitation response team. Members of the group who received the training when it first launched are now trainer of trainers; all components of the training program are organized and delivered by RMH staff-the clinical mentor only provides adjunct support. This two day training is held quarterly at RMH; basic life support and exposure to interventions for advanced care are included in the test and skills sign off. Seventy staff members have received the training this year alone. An increased number of admission/transfer to ICU due to successful resuscitation attempts is noted. Lessons learned: -Number of staff trained 2012-2014 (to be verified). -Staff who train together practice with greater collaboration during actual resuscitation events. -Staff more likely to initiate BLS if peer support is present-more staff trained equals more support. -More access to Advanced Cardiac Life Support training is necessary now that the cadre of BLS trained staff is growing. Conclusions: Increased access to training, peer support, and collaborative practice are effective strategies to strengthening resuscitation capacity within a hospital.Keywords: resuscitation, basic life support, capacity building, resuscitation response teams, nurse trainer of trainers
Procedia PDF Downloads 3049081 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1349080 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria
Authors: Festus M. Epetimehin
Abstract:
This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.Keywords: PSM, binary logit model, Agri-SME
Procedia PDF Downloads 979079 The Effects of Six Weeks Endurance Training and Aloe Vera on COX-2 and VEGF Levels in Mice with Breast Cancer
Authors: Alireza Barari, Ahmad Abdi
Abstract:
The aim of this study was to determine the effects of the effects of six weeks endurance training and Aloe Vera on cyclooxygenase 2 (COX-2) and VEGF levels in mice with breast cancer. For this purpose, 35 rats were randomly divided into 5 groups: control (healthy), control (cancer), training (cancer), Aloe Vera (cancer) and Aloe Vera + training (cancer). Induction of breast cancer tumors were done in mice by planting method. The training program includes six weeks of swimming training was done in three sessions per week. Training time from 10 minutes on the first day increased to 60 minutes in second week, and by stabilizing this time, the water flow rate was increased from 7 to 15 liters per minute. 300 mg per kg body weight of Aloe Vera extract was injected into the peritoneal. Sampling was done 48 hours after the last exercise session. K-S test to determine the normality of the data and analysis of variance for repeated measures and Tukey test was used to analyze the data. A significant difference in the p<0.05 accepted. The results showed that induction of cancer cells significantly increased levels of COX-2 in aloe group and VEGF in training and Aloe Vera + training groups. The results suggest that swimming exercise and Aloe Vera can reduce levels of COX-2 and VEGF in mice with breast cancer.The results of this study, Induction of cancer cells significantly increased levels of COX-2 and MMP-9 in the control group compared with the cancer control group. The results suggest that Aloe Vera can probably inhibit the cyclooxygenase pathway and thus production of prostaglandin E2 decrease of arachidonic acid.Keywords: endurance training, aloe vera, COX-2, VEGF
Procedia PDF Downloads 2899078 Ten Basic Exercises of Muay Thai Chaiya on Balance and Strength in Male Older Adults
Authors: K. Thawichai, R. Pornthep
Abstract:
This study examined the effects of ten basic exercises of Muay Thai Chaiya training for balance and strength in male older adults. Thirty male older adult volunteer from Thayang elderly clubs, Thayang, Petchaburi, Thailand. All participants were randomly assigned to two groups a training group and a control group. The training group (n=15) participated in eight week training program of ten basic exercises of Muay Thai Chaiya training and not to change or increase another exercise during of the study. In the control group, (n=15) did not participate in ten basic exercises of Muay Thai Chaiya training. Both groups were tested before and after eight weeks of the study period on balance in terms of single leg stance with eyes closed and strength in terms of the thirty second chair stand. The data of the study show that the participants of the training group perform significantly different higher scores in single leg stance with eyes closed and thirty second chair stand than the participants in the control group. The results of this study suggested that ten basic exercises of Muay Thai Chaiya training can use to improve balance and strength in male older adults.Keywords: balance, strength, Muay Thai Chaiya, older adults
Procedia PDF Downloads 4569077 Improving the Emergency Medicine Teaching from the Perspective of Faculty Training
Authors: Qin-Min Ge, Shu-Ming Pan
Abstract:
Emergency clinicians usually get teaching qualification after graduating from medical universities without special faculty training in China mainland. Emergency departments are overcrowded places, with large numbers of patients suffering undifferentiated illness. In the field of emergency medicine (EM), improving the faculty competencies and developing the teaching skills are important for medical education, they could enhance learners outcomes and hence affect the patients prognosis indirectly. This article highlights the necessities of faculty training in EM, illustrates the qualities a good clinical educator should qualify, advances the skills as educators in an academic setting and discusses the ways to be good clinical teachers.Keywords: emergency education, competence, faculty training, teaching, emergency medicine
Procedia PDF Downloads 5969076 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia PDF Downloads 1259075 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies
Authors: Babak Mohajeri, Sen Bao, Timo Nyberg
Abstract:
Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis
Procedia PDF Downloads 3629074 Effect of Aerobic Training with Coriandrum sativum Extract on Selection of Oxidative Stress Markers in Diabetic Rats
Authors: M. Golzade Gangraj, A. Abdi, N. ganji
Abstract:
Aim: The aim of this study was to evaluate the Effect of aerobic training with Coriandrum sativum extract on selection of oxidative stress markers in diabetic rats. Methods: The population of male Wistar rats is the Pasteur Institute. Forty rats were randomly selected as subjects. After moving the mouse in vitro and stay for a week in a cage for sustainability, were diabetic. Diabetes induced by injection STZ (55 mg per kg of body weight of mice) was performed. According blood glucose was randomly divided into four experimental groups (control, training, extract and training-extract). Extract group consumed 150 mg per kg of body weight per day coriander juice. Training group performed aerobic training (50-55% VO2max). Result: The results showed that aerobic exercise training and coriander seed extract caused a significant increase in total antioxidant; superoxide dismutase and catalase were significantly decreased malondialdehyde. Conclusion: the research findings can be stated that the exercise with coriander seed extract has the ability to inhibit free radicals and can have beneficial effects on the body's antioxidant defense system and reduce oxidative stress in diabetic rats with STZ. Because it improves the body's antioxidant defense by increasing serum levels of antioxidant enzymes.Keywords: aerobic training, coriandrum sativum, antioxidant, diabetes
Procedia PDF Downloads 5139073 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa
Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh
Abstract:
Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health
Procedia PDF Downloads 1499072 Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand
Authors: Sajed A. Habib
Abstract:
Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students’ evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly.Keywords: automation, industry 4.0, model-based design training, problem-based learning
Procedia PDF Downloads 1349071 Auto-Tuning of CNC Parameters According to the Machining Mode Selection
Authors: Jenq-Shyong Chen, Ben-Fong Yu
Abstract:
CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality
Procedia PDF Downloads 3809070 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1509069 Distance Training Packages on Providing for Learner with Special Needs
Authors: Jareeluk Ratanaphan
Abstract:
The purposed of this research were; 1.To survey the teacher’s needs on knowledge about special education management for special needs learner 2.To development of distance training packages on providing for learner with special needs. 3. To study the effects of using the packages on trainee’s achievement. 4. To study the effects of using the packages on trainee’s opinion on the distance training packages. The design of the experiment was research and development. The research sample for survey were 86 teachers, and 22 teachers for study the effects of using the packages on achievement and opinion. The research instrument comprised: 1) training packages on special education management for special needs learner 2) achievement test 3) questionnaire. Mean, percentage, standard deviation, t-test and content analysis were used for data analysis. The findings of the research were as follows: 1. The teacher’s needs on knowledge about teaching for learner with learning disability, mental retardation, autism, physical and health impairment and research in special education. 2. The package composed of special education management for special needs student document and manual of distance training packages. The efficiency of packages was established at 79.50/81.35. 3. The results of using the packages were the posttest average scores of trainee’s achievement were higher than pretest. 4. The trainee’s opinion on the package was at the highest level.Keywords: distance training, training package, teacher, learner with special needs
Procedia PDF Downloads 339