Search results for: energy modeling tools
14875 A New Suburb Renovation Concept
Authors: Anu Soikkelii, Laura Sorri
Abstract:
Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects. The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.Keywords: energy efficiency, prefabrication, renovation concept, suburbs, sustainability, user-orientated
Procedia PDF Downloads 33514874 Transient Modeling of Velocity Profile and Heat Transfer of Electrohydrodynamically Augmented Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
At this paper velocity profile modeling and heat transfer in the micro heat pipes by using electrohydrodynamic (EHD) field at the transient regime have been studied. In the transient flow, one dimensional and two phase fluid flow and heat transfer for micro heat pipes with square cross section, have been studied. At this model Coulomb and dielectrophoretic forces are considered. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by numerical methods. Transient behavior of affecting parameters e.g. substrate temperature, velocity of coolant liquid, radius of curvature and coolant liquid pressure, has been verified. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. So, the time required to reach the steady state regime decreases from 16 seconds to 2.4 seconds after applying EHD field. Another result has been observed implicitly that by increasing the heat input the effect of EHD field became more significant. The numerical results of model predict the experimental results available in the literature successfully, and it has been observed there is a good agreement between them.Keywords: micro heat pipe, transient modeling, electrohydrodynamics, capillary, meniscus
Procedia PDF Downloads 26414873 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 48514872 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 8014871 Modeling of the Flow through an Earth Dam and Geotechnical Slope Analyzes
Authors: Ahmed Ferhati, Arezki Adjrad, Ratiba Mitiche-Kettab, Hakim Djafer Khodja
Abstract:
The porous media are omnipresent around us that they are natural as sand, clay, rocks, or manufactured like concretes, cement, and ceramics. The variety of porous environment indicates a wide material range which can be very different from each other. Their common point is to be made up of a solid matrix and a porous space. In our case of study, we made the modeling of the flows in porous environments through the massives as in the case of an earth dam. The computer code used (PLAXIS) offer the possibility of modeling of various structures, in particular, the works in lands because that it deals with the pore water pressure due to the underground flow and the calculation of the plastic deformations. To confirm results obtained by PLAXIS, GeoStudio SEEP/W code was used. This work treats modeling of flows and mechanical and hydraulic behavior of earth dam. A general framework which can fit the calculation of this kind of structures and the coupling of the soil consolidation and free surface flows was defined. In this study; we have confronted a real case modeling of an earth dam. It was shown, in particular, that it is possible to entirely lead the calculation of real dam and to get encouraging results from the hydraulic and mechanical point of view.Keywords: analyzes, dam, flow, modeling, PLAXIS, seep/w, slope
Procedia PDF Downloads 31014870 Energy Consumption in China’s Urban Water Supply System
Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu
Abstract:
In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.Keywords: china, electrical energy use, water-energy nexus, water supply
Procedia PDF Downloads 49814869 Sustainable Landscape Development Assessment Tools
Authors: Nur Azemah Aminludin, Osman Mohd Tahir
Abstract:
A dynamic landscape development is important for providing healthy ecosystem which supports all life. Nowadays, many initiatives towards sustainable development have been published. They lead to better living and more efficient use of natural resources in sustaining long-term ecological, economics and social benefits. To date, many assessment tools related to built environment have been established and practiced in this region, which mostly has the purpose assessing the environment performance of buildings. Hence, an assessment tool focusing on the sustainable landscape development itself is a necessity. This paper reviews the assessment criteria and indicators that are suitable for sustainable landscape development practices. The local and global assessment tools for landscape development are investigated, analyzed and discussed critically. Consideration also is given to the integration of the assessment tools with the surrounding environmental, social, and economical aspects. In addition, the assessment criteria and indicators for assessing the landscape development in Malaysia are also reviewed and discussed. In conclusion, this paper reviews, analyzes and discusses on available local and global landscape development assessment tools for sustainability.Keywords: assessment tool, sustainable landscape development, assessment criteria, assessment indicator
Procedia PDF Downloads 39314868 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods
Authors: Amir Sattari
Abstract:
For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.Keywords: energy calculation, energy consumption, energy simulation, IDA ICE, TMF energi
Procedia PDF Downloads 11614867 Benchmarking of Pentesting Tools
Authors: Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
The benchmarking of tools for dynamic analysis of vulnerabilities in web applications is something that is done periodically, because these tools from time to time update their knowledge base and search algorithms, in order to improve their accuracy. Unfortunately, the vast majority of these evaluations are made by software enthusiasts who publish their results on blogs or on non-academic websites and always with the same evaluation methodology. Similarly, academics who have carried out this type of analysis from a scientific approach, the majority, make their analysis within the same methodology as well the empirical authors. This paper is based on the interest of finding answers to questions that many users of this type of tools have been asking over the years, such as, to know if the tool truly test and evaluate every vulnerability that it ensures do, or if the tool, really, deliver a real report of all the vulnerabilities tested and exploited. This kind of questions have also motivated previous work but without real answers. The aim of this paper is to show results that truly answer, at least on the tested tools, all those unanswered questions. All the results have been obtained by changing the common model of benchmarking used for all those previous works.Keywords: cybersecurity, IDS, security, web scanners, web vulnerabilities
Procedia PDF Downloads 31914866 Modeling and Power Control of DFIG Used in Wind Energy System
Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri
Abstract:
Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability
Procedia PDF Downloads 37914865 Technical and Practical Aspects of Sizing a Autonomous PV System
Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba
Abstract:
The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.Keywords: solar panel, solar radiation, inverter, optimization
Procedia PDF Downloads 60914864 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 31014863 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 37114862 Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven
Authors: M.H. Keshek, M.N. Omar, A.H. Amer
Abstract:
Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness.Keywords: microwave drying, eggplant, drying rate, drying efficiency, energy consumption
Procedia PDF Downloads 15914861 Digital Tools in Education and Online Learning in the Field of Accounting
Authors: Marina Ercegović, Mateja Brozović, Nikolina Dečman
Abstract:
The extent of using digital technologies in teaching has definitely intensified during the pandemic, leading to the replacement of traditional learning with online learning. The experiences through the pandemic have shown that not all fields of study and all levels of education are equally suitable for the implementation of digital tools and online learning. It is generally expected that students at higher levels of study have better digital competences and are therefore more equipped and prepared to participate in online education or traditional education in classrooms that include the use of digital tools. Accounting as a field of study has good predispositions to be suitable for the use of digital tools and online learning: it can usually be taught remotely, while modern accounting also incorporates the use of different digital tools. The goals of the research are: 1) to systematize the results of the existing literature regarding the use of digital tools and online learning in education, with a special emphasis on teaching accounting, 2) to analyze the current level of digital competences of accounting students in Croatia, 3) to investigate the current attitudes of accounting students in Croatia regarding the use of digital tools in education, as well as the advantages and disadvantages of online learning, and 4) to compare the results of the research conducted in 2024/2025 with the same research conducted in 2021/2022. In addition to the literature review, a primary research using an online questionnaire was conducted among accounting students in Croatia. The sample included students enrolled in the university or professional study program related to accounting and finance, or accounting and auditing. The original research was conducted in 2021/2022, i.e. during the pandemic, when students had to suddenly transition from traditional learning to online learning, mostly without proper preparation and planning, which might have negatively affected the attitudes of students towards online learning and digital tools. This is why it repeated the research in 2024/2025, to compare the results and to explore if there are any significant differences.Keywords: digital tools, accounting, online learning, education
Procedia PDF Downloads 414860 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy
Authors: Ozgul Kartal, Wade Tillett, Lyn D. English
Abstract:
Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education
Procedia PDF Downloads 6614859 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials
Authors: Francesca Scalisi, Cesare Sposito
Abstract:
The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction
Procedia PDF Downloads 34414858 Energy Trends in Rural South Africa: A Case Study of the Mnweni Rural Community in the Province of Kwazulu-Natal
Authors: Noel Chellan
Abstract:
Energy is the life-blood of development. All human societies have been and still are dependent on energy – some societies more than others. With regard to energy in South Africa, previous policies of the apartheid regime neglected the energy needs of poor black communities in general – and rural communities in particular. Since South Africa’s first democratic elections in 1994 – whilst millions of South African households have received electricity from the national electricity grid, there are still many rural communities that are still experiencing challenges in relation to both electricity deprivation as well as provision. This paper looks at the energy-mix of the Mnweni rural community in South Africa and argues that understanding energy is key to understanding the nature and forms of development of any community or country, for that matter. The paper engages with the energy trends in the rural community of Mnweni from the days of apartheid until 2021. It also looks at agricultural practises from an energy perspective. Such an energy perspective will enable one to assess the pace and scale of development in rural Mnweni.Keywords: rural, energy, development, apartheid
Procedia PDF Downloads 24514857 Modelisation of a Full-Scale Closed Cement Grinding
Abstract:
An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.Keywords: grinding circuit, clinker, cement, modeling, population balance, energy
Procedia PDF Downloads 52614856 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 14814855 Adopting Collaborative Business Processes to Prevent the Loss of Information in Public Administration Organisations
Authors: A. Capodieci, G. Del Fiore, L. Mainetti
Abstract:
Recently, the use of web 2.0 tools has increased in companies and public administration organizations. This phenomenon, known as "Enterprise 2.0", has, de facto, modified common organizational and operative practices. This has led “knowledge workers” to change their working practices through the use of Web 2.0 communication tools. Unfortunately, these tools have not been integrated with existing enterprise information systems, a situation that could potentially lead to a loss of information. This is an important problem in an organizational context, because knowledge of information exchanged within the organization is needed to increase the efficiency and competitiveness of the organization. In this article we demonstrate that it is possible to capture this knowledge using collaboration processes, which are processes of abstraction created in accordance with design patterns and applied to new organizational operative practices.Keywords: business practices, business process patterns, collaboration tools, enterprise 2.0, knowledge workers
Procedia PDF Downloads 36214854 The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle
Authors: Miroslaw Wendeker, Piotr Kacejko, Marcin Szlachetka, Mariusz Duk
Abstract:
This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics.Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, kinetic energy
Procedia PDF Downloads 31714853 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 14114852 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases
Authors: Juan Sepúlveda
Abstract:
Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.Keywords: energy efficiency, MCA, scientometric, trends
Procedia PDF Downloads 37314851 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC
Authors: Aref Yazdani, Ali Tofighi
Abstract:
We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model
Procedia PDF Downloads 14414850 Advantages and Disadvantages of Hydroelectric Energy
Authors: Esther Ushike Akashie
Abstract:
No matter who you are, where you are from and irrespective of age and gender, there is a universal need for power and energy. Every year, this need grows even more urgent the more scientific and technological inventions advance. Due to this fact, we find that majority of the research related to energy and power has been focused on finding new and innovative ways to produce power. Furthermore, we observe that because of the environmental state of our world today and the impact of climate change, one of the most explored routes of study has been the use of renewable energies. In this paper, we will be looking at one of the oldest forms of renewable energy, hydroelectric energy. First off, an overview of its history, sources, technical aspects, and applications will be evaluated. After which, we will then proceed to understand the main benefits and drawbacks of this form of renewable energy and offer insights on how it can be better utilized in our world today.Keywords: hydropower, hydroelectric energy, advantages, disadvantages
Procedia PDF Downloads 14314849 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 20714848 Overview of Smart Grid Applications in Turkey
Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural
Abstract:
Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.Keywords: energy efficiency, smart grids, smart home, applications
Procedia PDF Downloads 49814847 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector
Authors: Sempiga Olivier, Dominika Latusek-Jurczak
Abstract:
Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices
Procedia PDF Downloads 1514846 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle
Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine
Abstract:
Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty
Procedia PDF Downloads 139