Search results for: defect prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2627

Search results for: defect prediction

2207 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets

Authors: Abdullah Al Faruque, Ram Balachandar

Abstract:

Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.

Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time

Procedia PDF Downloads 435
2206 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents

Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady

Abstract:

Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.

Keywords: adolescents, MRI classification, pars interticularis, treatment protocol

Procedia PDF Downloads 153
2205 Acute Cartilage Defects of the Knee Treated With Chondral Restoration Procedures and Patellofemoral Stabilisation

Authors: John Scanlon, Antony Raymond, Randeep Aujla, Peter D’Alessandro, Satyen Gohil

Abstract:

Background: The incidence of significant acute chondral injuries with patella dislocation is around 10-15%. It is accepted that chondral procedures should only be performed in the presence of joint stability Methods:Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging, and complications were recorded. PROMs and patient satisfaction was obtained. Results:20 knees (18 patients) were included. Mean age was 18.6 years (range; 11-39), and the mean follow-up was 16.6 months (range; 2-70). The defect locations were the lateral femoral condyle (9/20; 45%), patella (9/20; 45%), medial femoral condyle (1/20; 5%) and the trochlea (1/20; 5%). The mean defect size was 2.6cm2. Twelve knees were treated with cartilage fixation, 5 with microfracture, and 3 with OATS. At follow up, the overall mean Lysholm score was 77.4 (± 17.1), with no chondral regenerative procedure being statistically superior. There was no difference in Lysholm scores between those patients having acute medial patellofemoral ligament reconstruction versus medial soft tissue plication (p=0.59). Five (25%) knees required re-operation (one arthroscopic arthrolysis; one patella chondroplasty; two removal of loose bodies; one implant adjustment). Overall, 90% responded as being satisfied with surgery. Conclusion: Our aggressive pathway to identify and treat acute cartilage defects with early operative intervention and patella stabilisation has shown high rates of satisfaction and Lysholm scores. The full range of chondral restoration options should be considered by surgeons managing these patients.

Keywords: patella dislocation, chondral restoration, knee, patella stabilisation

Procedia PDF Downloads 128
2204 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 852
2203 Spontaneous Reformation of Dehiscent Frontal Sinus Wall after Endoscopic Removal of Mucocele

Authors: Tan Dexian Arthur, James Wei Ming Kwek, Ian Loh, Lee Tee Sin

Abstract:

Statement of the Problem: Mucoceles most commonly affect the frontal sinus, which results from chronic obstruction of the sinus ostium or cystic dilatation of mucous glands with ductal obstruction. They are known to cause bony erosion of the sinus walls, which can lead to large defects. These defects were typically managed by obliteration or cranialization of the frontal sinus. Although short term outcomes of conservative management of significant posterior table defects from fractures are promising, there have been no studies on the long-term outcomes of large dehiscences in the posterior wall of the frontal sinus. Methodology & Findings : Computed Tomography (CT) Paranasal Sinuses images were analyzed and found complete spontaneous osteogenesis of a large dehiscent frontal sinus posterior wall, secondary to a large mucocele, 9 years from functional endoscopic sinus surgery with the defect managed conservatively. Conclusion & Significance: The dura is well known for its osteogenic properties. Prior studies have showed that dura could induce osteogenesis in cutaneous tissue in the absence of other central nervous system structures. It was also demonstrated that osteogenesis and chondrogenesis were possible in zygomatic fractures by transplanting neonatal dura grafts to the bony defects in rats. Extrapolating from these studies, the authors postulate that the presence of dura beneath the bony deformity of the posterior frontal sinus wall had likely initiated the osteogenesis and restored the bony defect in the patient. In our literature review, we did not find any reports of spontaneous osteogenesis of large frontal sinus defects. While our experience is incidental, it reinforces the osteogenetic potential of an intact dura and further highlights that selected large defects of the posterior wall of the frontal sinus can be conservatively managed.

Keywords: paranasal sinus mucocele, mucocele, osteogenesis, dehiscence

Procedia PDF Downloads 64
2202 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 144
2201 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 116
2200 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar

Authors: Yasir E. Mohieldeen

Abstract:

Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.

Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination

Procedia PDF Downloads 107
2199 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes

Authors: Dariush Jafari, S. Mostafa Nowee

Abstract:

In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.

Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system

Procedia PDF Downloads 385
2198 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 99
2197 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 350
2196 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker

Authors: Jong Won, Park, Sung Hyun, Kim

Abstract:

The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.

Keywords: impact energy, impact frequency, hydraulic breaker, life prediction

Procedia PDF Downloads 441
2195 A Regression Model for Residual-State Creep Failure

Authors: Deepak Raj Bhat, Ryuichi Yatabe

Abstract:

In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.

Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils

Procedia PDF Downloads 408
2194 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 212
2193 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 482
2192 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence

Authors: Fitri CaturLestari

Abstract:

According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.

Keywords: demography, economic growth, gender, HDI

Procedia PDF Downloads 335
2191 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 209
2190 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance

Authors: Shauma L. Tamba

Abstract:

This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.

Keywords: morality, competence, ingroup identification, religion, group norm

Procedia PDF Downloads 408
2189 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study

Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost

Abstract:

The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.

Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones

Procedia PDF Downloads 148
2188 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
2187 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology

Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan

Abstract:

Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.

Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation

Procedia PDF Downloads 460
2186 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120
2185 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 157
2184 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 102
2183 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 298
2182 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572
2181 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 182
2180 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
2179 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 99
2178 Multiple Organ Manifestation in Neonatal Lupus Erythematous: Report of Two Cases

Authors: A. Lubis, R. Widayanti, Z. Hikmah, A. Endaryanto, A. Harsono, A. Harianto, R. Etika, D. K. Handayani, M. Sampurna

Abstract:

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

Keywords: neonatus lupus erythematous, maternal autoantibody, clinical characteristic, multiple organ manifestation

Procedia PDF Downloads 424