Search results for: data mining techniques
29427 Environmental Monitoring by Using Unmanned Aerial Vehicle (UAV) Images and Spatial Data: A Case Study of Mineral Exploitation in Brazilian Federal District, Brazil
Authors: Maria De Albuquerque Bercot, Caio Gustavo Mesquita Angelo, Daniela Maria Moreira Siqueira, Augusto Assucena De Vasconcellos, Rodrigo Studart Correa
Abstract:
Mining is an important socioeconomic activity in Brazil although it negatively impacts the environment. Mineral operations cause irreversible changes in topography, removal of vegetation and topsoil, habitat destruction, displacement of fauna, loss of biodiversity, soil erosion, siltation of watercourses and have potential to enhance climate change. Due to the impacts and its pollution potential, mining activity in Brazil is legally subjected to environmental licensing. Unlicensed mining operations or operations that not abide to the terms of an obtained license are taken as environmental crimes in the country. This work reports a case analyzed in the Forensic Institute of the Brazilian Federal District Civil Police. The case consisted of detecting illegal aspects of sand exploitation from a licensed mine in Federal District, nearby Brasilia city. The fieldwork covered an area of roughly 6 ha, which was surveyed with an unmanned aerial vehicle (UAV) (PHANTOM 3 ADVANCED). The overflight with UAV took about 20 min, with maximum flight height of 100 m. 592 UAV georeferenced images were obtained and processed in a photogrammetric software (AGISOFT PHOTOSCAN 1.1.4), which generated a mosaic of geo-referenced images and a 3D model in less than six working hours. The 3D model was analyzed in a forensic software for accurate modeling and volumetric analysis. (MAPTEK I-SITE FORENSIC 2.2). To ensure the 3D model was a true representation of the mine site, coordinates of ten control points and reference measures were taken during fieldwork and compared to respective spatial data in the model. Finally, these spatial data were used for measuring mining area, excavation depth and volume of exploited sand. Results showed that mine holder had not complied with some terms and conditions stated in the granted license, such as sand exploration beyond authorized extension, depth and volume. Easiness, the accuracy and expedition of procedures used in this case highlight the employment of UAV imagery and computational photogrammetry as efficient tools for outdoor forensic exams, especially on environmental issues.Keywords: computational photogrammetry, environmental monitoring, mining, UAV
Procedia PDF Downloads 31929426 Use of In-line Data Analytics and Empirical Model for Early Fault Detection
Authors: Hyun-Woo Cho
Abstract:
Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.Keywords: batch process, monitoring, measurement, kernel method
Procedia PDF Downloads 32329425 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 8329424 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24629423 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul
Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee
Abstract:
This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes
Procedia PDF Downloads 29529422 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review
Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari
Abstract:
In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)
Procedia PDF Downloads 39929421 Location Privacy Preservation of Vehicle Data In Internet of Vehicles
Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman
Abstract:
Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme
Procedia PDF Downloads 18029420 Implementation of Knowledge and Attitude Management Based on Holistic Approach in Andragogy Learning, as an Effort to Solve the Environmental Problems of Post-Coal Mining Activity
Authors: Aloysius Hardoko, Susilo
Abstract:
The root cause of the problem after the environmental damage due to coal mining activities defined as the province of East Kalimantan corridor masterplan economic activity accelerated the expansion of Indonesia's economic development (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest postes group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post-coal mining activity.Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental Issue
Procedia PDF Downloads 20729419 Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design
Authors: Rhoann Kerh, Chen-Fu Chien, Kuo-Yi Lin
Abstract:
In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further understand the product appearance preference of different market segment. However, few studies have been done for exploring the relationship between consumer background and the reaction of product appearance. This study aims to propose a data mining framework to capture the user’s information and the important relation between product appearance factors. The proposed framework consists of problem definition and structuring, data preparation, rules generation, and results evaluation and interpretation. An empirical study has been done in Taiwan that recruited 168 subjects from different background to experience the appearance performance of 11 different portable computers. The results assist the designers to develop product strategies based on the characteristics of consumers and the product concept that related to the UX, which help to launch the products to the right customers and increase the market shares. The results have shown the practical feasibility of the proposed framework.Keywords: consumers decision making, product design, rough set theory, user experience
Procedia PDF Downloads 31329418 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 35729417 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 7529416 The Regulation of Reputational Information in the Sharing Economy
Authors: Emre Bayamlıoğlu
Abstract:
This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy
Procedia PDF Downloads 46529415 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 54829414 Mining Scientific Literature to Discover Potential Research Data Sources: An Exploratory Study in the Field of Haemato-Oncology
Authors: A. Anastasiou, K. S. Tingay
Abstract:
Background: Discovering suitable datasets is an important part of health research, particularly for projects working with clinical data from patients organized in cohorts (cohort data), but with the proliferation of so many national and international initiatives, it is becoming increasingly difficult for research teams to locate real world datasets that are most relevant to their project objectives. We present a method for identifying healthcare institutes in the European Union (EU) which may hold haemato-oncology (HO) data. A key enabler of this research was the bibInsight platform, a scientometric data management and analysis system developed by the authors at Swansea University. Method: A PubMed search was conducted using HO clinical terms taken from previous work. The resulting XML file was processed using the bibInsight platform, linking affiliations to the Global Research Identifier Database (GRID). GRID is an international, standardized list of institutions, including the city and country in which the institution exists, as well as a category of the main business type, e.g., Academic, Healthcare, Government, Company. Countries were limited to the 28 current EU members, and institute type to 'Healthcare'. An article was considered valid if at least one author was affiliated with an EU-based healthcare institute. Results: The PubMed search produced 21,310 articles, consisting of 9,885 distinct affiliations with correspondence in GRID. Of these articles, 760 were from EU countries, and 390 of these were healthcare institutes. One affiliation was excluded as being a veterinary hospital. Two EU countries did not have any publications in our analysis dataset. The results were analysed by country and by individual healthcare institute. Networks both within the EU and internationally show institutional collaborations, which may suggest a willingness to share data for research purposes. Geographical mapping can ensure that data has broad population coverage. Collaborations with industry or government may exclude healthcare institutes that may have embargos or additional costs associated with data access. Conclusions: Data reuse is becoming increasingly important both for ensuring the validity of results, and economy of available resources. The ability to identify potential, specific data sources from over twenty thousand articles in less than an hour could assist in improving knowledge of, and access to, data sources. As our method has not yet specified if these healthcare institutes are holding data, or merely publishing on that topic, future work will involve text mining of data-specific concordant terms to identify numbers of participants, demographics, study methodologies, and sub-topics of interest.Keywords: data reuse, data discovery, data linkage, journal articles, text mining
Procedia PDF Downloads 11529413 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 4329412 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 38529411 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology
Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal
Abstract:
Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.Keywords: urology, surgical innovation, novel surgical techniques, publications
Procedia PDF Downloads 4929410 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 19629409 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 44629408 Analyzing the Effectiveness of Different Testing Techniques in Ensuring Software Quality
Authors: R. M. P. C. Bandara, M. L. L. Weerasinghe, K. T. C. R. Kumari, A. G. D. R. Hansika, D. I. De Silva, D. M. T. H. Dias
Abstract:
Software testing is an essential process in software development that aims to identify defects and ensure that software is functioning as intended. Various testing techniques are employed to achieve this goal, but the effectiveness of these techniques varies. This research paper analyzes the effectiveness of different testing techniques in ensuring software quality. The paper explores different testing techniques, including manual and automated testing, and evaluates their effectiveness in terms of identifying defects, reducing the number of defects in software, and ensuring that software meets its functional and non-functional requirements. Moreover, the paper will also investigate the impact of factors such as testing time, test coverage, and testing environment on the effectiveness of these techniques. This research aims to provide valuable insights into the effectiveness of different testing techniques, enabling software development teams to make informed decisions about the testing approach that is best suited to their needs. By improving testing techniques, the number of defects in software can be reduced, enhancing the quality of software and ultimately providing better software for users.Keywords: software testing life cycle, software testing techniques, software testing strategies, effectiveness, software quality
Procedia PDF Downloads 8429407 The Effects of Applying Linguistic Principles and Teaching Techniques in Teaching English at Secondary School in Thailand
Authors: Wannakarn Likitrattanaporn
Abstract:
The purposes of this investigation were to investigate the effects of applying linguistic principles and teaching techniques in teaching English through experimenting the Adapted English Lessons and to determine the teachers’ opinions as well as students’ opinions towards the Adapted Lessons. The subjects of the study were 5 Thai teachers, who teach English, and 85 Grade 10 mixed-ability students at Triamudom Suksa Pattanakarn Ratchada School, Bangkok, Thailand. The research instruments included the Adapted English Lessons, questionnaires asking teachers’ and students’ opinions towards the Adapted Lessons and the informal interview. The data from the research instruments was collected and analyzed concerning the teachers’ and students’ opinions towards adapting linguistic principles and teaching techniques. Linguistic principles of minimal pair and articulatory phonetics and teaching techniques of mimicry-memorization; vocabulary substitution drills, language pattern drills, reading comprehension exercise, practicing listening, speaking and writing skill and communicative activities; informal talk and free writing are applied. The data was statistically compiled according to an arithmetic percentage. The results showed that the teachers and students have very highly positive opinions towards adapting linguistic principles for teaching and learning phonological accuracy. Teaching techniques provided in the Adapted English Lessons can be used efficiently in the classroom. The teachers and students have positive opinions towards them too.Keywords: applying linguistic principles and teaching techniques, teachers’ and students’ opinions, teaching English, the adapted English lessons
Procedia PDF Downloads 47729406 Customer Preference in the Textile Market: Fabric-Based Analysis
Authors: Francisca Margarita Ocran
Abstract:
Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.Keywords: consumer behavior, data mining, lingerie, machine learning, preference
Procedia PDF Downloads 9029405 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample
Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos
Abstract:
Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD
Procedia PDF Downloads 15829404 Principal Component Analysis in Drug-Excipient Interactions
Authors: Farzad Khajavi
Abstract:
Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.Keywords: API, compatibility, DSC, TG, interactions
Procedia PDF Downloads 13329403 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12329402 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7529401 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 42029400 Strategies for Improving Teaching and Learning in Higher Institutions: Case Study of Enugu State University of Science and Technology, Nigeria
Authors: Gertrude Nkechi Okenwa
Abstract:
Higher institutions, especially the universities that are saddled with the responsibilities of teaching, learning, research, publications and social services for the production of graduates that are worthy in learning and character, and the creation of up-to-date knowledge and innovations for the total socio-economic and even political development of a given nation. Therefore, the purpose of the study was to identify the teaching, learning techniques used in the Enugu State University of Science and Technology to ensure or ascertain students’ perception on these techniques. To guide the study, survey research method was used. The population for the study was made up of second and final year students which summed up to one hundred and twenty-six students in the faculty of education. Stratified random sampling technique was adopted. A sample size of sixty (60) students was drawn for the study. The instrument used for data collection was questionnaire. To analyze the data, mean and standard deviation were used to answers the research questions. The findings revealed that direct instruction and construction techniques are used in the university. On the whole, it was observed that the students perceived constructivist techniques to be more useful and effective than direct instruction technique. Based on the findings recommendations were made to include diversification of teaching techniques among others.Keywords: Strategies, Teaching and Learning, Constructive Technique, Direct Instructional Technique
Procedia PDF Downloads 54129399 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 7729398 A Review of Soil Stabilization Techniques
Authors: Amin Chegenizadeh, Mahdi Keramatikerman
Abstract:
Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.Keywords: review, soil, stabilization, techniques
Procedia PDF Downloads 545