Search results for: solar thermal applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10224

Search results for: solar thermal applications

5784 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems

Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib

Abstract:

We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.

Keywords: thin films, photovoltaic, hybrid systems, heterojunction

Procedia PDF Downloads 270
5783 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 334
5782 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100°C. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation

Procedia PDF Downloads 376
5781 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix

Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin

Abstract:

Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.

Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid

Procedia PDF Downloads 446
5780 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption

Procedia PDF Downloads 175
5779 6G: Emerging Architectures, Technologies and Challenges

Authors: Abdulrahman Yarali

Abstract:

The advancement of technology never stops because the demands for improved internet and communication connectivity are increasing. Just as 5G networks are rolling out, the world has begun to talk about the sixth-generation networks (6G). The semantics of 6G are more or less the same as 5G networks because they strive to boost speeds, machine-to-machine (M2M) communication, and latency reduction. However, some of the distinctive focuses of 6G include the optimization of networks of machines through super speeds and innovative features. This paper discusses many aspects of the technologies, architectures, challenges, and opportunities of 6G wireless communication systems.

Keywords: 6G, characteristics, infrastructures, technologies, AI, ML, IoT, applications

Procedia PDF Downloads 11
5778 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta

Authors: G. A. Asciak, C. Camilleri, A. Rizzo

Abstract:

The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.

Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood

Procedia PDF Downloads 239
5777 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant

Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam

Abstract:

Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.

Keywords: wastewater, metahne, biogas production potential, anaerobic digestion

Procedia PDF Downloads 105
5776 Governance Token Distributions of Layer-One.X

Authors: P. Wongthongtham, K. Coutinho, A. MacCarthy

Abstract:

Layer-One.X (L1X) blockchain provides the infrastructure layer, and decentralised applications can be created on the L1X infrastructure. L1X tokenomics are important and require a proportional balance between token distribution, nurturing user activity and engagement, and financial incentives. In this paper, we present research in progress on L1X tokenomics describing key concepts and implementations, including token velocity and value, incentive scheme, and broad distribution. Particularly the economic design of the native token of the L1X blockchain, called HeartBit (HB), is presented.

Keywords: tokenisation, layer one blockchain, interoperability, token distribution, L1X blockchain

Procedia PDF Downloads 110
5775 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach

Authors: Franziska Mais, Till Gramberg

Abstract:

The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.

Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 72
5774 Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct

Authors: Reshma Jolly, Mohammad Shakir, Mohammad Shoeb Khan, Noor E. Iram

Abstract:

A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively.

Keywords: bioactive, chitin, hyroxyapatite, nanocomposite

Procedia PDF Downloads 486
5773 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 342
5772 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 387
5771 Simultaneous Determination of Some Phenolic Pesticides in Environmental and Biological Samples

Authors: Yasmeen F. Pervez, Etesh K. Janghel, Santosh Kumar Sar

Abstract:

Simple and sensitive analytical thermal gradient-thin layer chromatography technique has been developed for the simultaneous determination of phenolic pesticides like carbaryl, propoxur and carbofuran. It is based on the differential migration of colored derivatives formed by the reaction of hydrolysed phenolic compound with diazotized 3, 4 dimethyl aniline on a silica gel plate. Quantitative evaluation of hydrolyzed phenolic compound is made by visual comparison of intensities of color by spectrophotometry. The color system obeys Beer’s law in the following working range in ppm : carbaryl, 0.5-6.6; propoxur, 0.8-7.2; and carbofuran, 0.2-3.3 respectively. The Molar absorptivity, Sandell’s sensitivity, Correlation coefficient have been determined. The effects of analytical parameters on migration and analysis have been evaluated. The methods are highly reproducible and have been successfully applied to determination of phenolic pesticides in environmental and biological samples.

Keywords: phenolic pesticides (carbaryl, propoxur and carbofuran), 3.4 dimethyl aniline, environmental, biological samples

Procedia PDF Downloads 403
5770 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 62
5769 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: air pollutants, computational fluid dynamics, dispersion, simulation

Procedia PDF Downloads 450
5768 Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea

Authors: Raghda El-Nagara, Maher I. Nessim, Carmen E. Elshafee, Renee I. Abdallah, Yasser M. Moustafa

Abstract:

Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm.

Keywords: ionic liquids, amphiphilic, oil spill dispersants, dicationic, efficiency test

Procedia PDF Downloads 146
5767 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material

Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode

Abstract:

The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.

Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure

Procedia PDF Downloads 119
5766 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 162
5765 Testing of Gas Turbine KingTech with Biodiesel

Authors: Nicolas Lipchak, Franco Aiducic, Santiago Baieli

Abstract:

The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals.

Keywords: biodiesel, efficiency, KingTech, turbine

Procedia PDF Downloads 239
5764 The Use of Thermally Modified Diatomite to Remove Lead Ions

Authors: Hilary Limo Rutto

Abstract:

To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction.

Keywords: thermally modified, diatomite, adsorption, lead

Procedia PDF Downloads 227
5763 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House

Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal

Abstract:

In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.

Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction

Procedia PDF Downloads 192
5762 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 63
5761 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.

Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate

Procedia PDF Downloads 327
5760 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation

Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent

Abstract:

Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.

Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene

Procedia PDF Downloads 202
5759 Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions

Authors: Augustas Vaitkevicius, Mikhail Korjik, Eugene Tretyak, Ekaterina Trusova, Gintautas Tamulaitis

Abstract:

Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties.

Keywords: glass ceramics, luminescence, phosphor, silicate

Procedia PDF Downloads 310
5758 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 142
5757 Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering

Authors: A. Monfared, S. Faghihi

Abstract:

Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs.

Keywords: metallic glasses, biomaterials, biocompatibility, biocorrosion

Procedia PDF Downloads 208
5756 Tribological Investigation of Piston Ring Liner Assembly

Authors: Bharatkumar Sutaria, Tejaskumar Chaudhari

Abstract:

An engine performance can be increased by minimizing losses. There are various losses observed in the engines. i.e. thermal loss, heat loss and mechanical losses. Mechanical losses are in the tune of 15 to 20 % of the overall losses. Piston ring assembly contributes the highest friction in the mechanical frictional losses. The variation of piston speed in stroke length the friction force development is not uniform. In present work, comparison has been made between theoretical and experimental friction force under different operating conditions. The experiments are performed using variable operating parameters such as load, speed, temperature and lubricants. It is found that reducing trend of friction force and friction coefficient is in good nature with mixed lubrication regime of the Stribeck curve. Overall outcome from the laboratory test performance of segmented piston ring assembly using multi-grade oil offers reasonably good results at room and elevated temperatures.

Keywords: friction force, friction coefficient, piston rings, Stribeck curve

Procedia PDF Downloads 473
5755 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 343