Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5900

Search results for: modified simplex algorithm

1490 Regulating Information Asymmetries at Online Platforms for Short-Term Vacation Rental in European Union– Legal Conondrum Continues

Authors: Vesna Lukovic

Abstract:

Online platforms as new business models play an important role in today’s economy and the functioning of the EU’s internal market. In the travel industry, algorithms used by online platforms for short-stay accommodation provide suggestions and price information to travelers. Those suggestions and recommendations are displayed in search results via recommendation (ranking) systems. There has been a growing consensus that the current legal framework was not sufficient to resolve problems arising from platform practices. In order to enhance the potential of the EU’s Single Market, smaller businesses should be protected, and their rights strengthened vis-à-vis large online platforms. The Regulation (EU) 2019/1150 of the European Parliament and of the Council on promoting fairness and transparency for business users of online intermediation services aims to level the playing field in that respect. This research looks at Airbnb through the lenses of this regulation. The research explores key determinants and finds that although regulation is an important step in the right direction, it is not enough. It does not entail sufficient clarity obligations that would make online platforms an intermediary service which both accommodation providers and travelers could use with ease.

Keywords: algorithm, online platforms, ranking, consumers, EU regulation

Procedia PDF Downloads 133
1489 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 314
1488 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 82
1487 Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles

Authors: Salma E. Ahmed

Abstract:

Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work.

Keywords: controlled release, liposomes, micelles, polymersomes, targeting

Procedia PDF Downloads 199
1486 Investment and Economic Growth: An Empirical Analysis for Tanzania

Authors: Manamba Epaphra

Abstract:

This paper analyzes the causal effect between domestic private investment, public investment, foreign direct investment and economic growth in Tanzania during the 1970-2014 period. The modified neo-classical growth model that includes control variables such as trade liberalization, life expectancy and macroeconomic stability proxied by inflation is used to estimate the impact of investment on economic growth. Also, the economic growth models based on Phetsavong and Ichihashi (2012), and Le and Suruga (2005) are used to estimate the crowding out effect of public investment on private domestic investment on one hand and foreign direct investment on the other hand. A correlation test is applied to check the correlation among independent variables, and the results show that there is very low correlation suggesting that multicollinearity is not a serious problem. Moreover, the diagnostic tests including RESET regression errors specification test, Breusch-Godfrey serial correlation LM test, Jacque-Bera-normality test and white heteroskedasticity test reveal that the model has no signs of misspecification and that, the residuals are serially uncorrelated, normally distributed and homoskedastic. Generally, the empirical results show that the domestic private investment plays an important role in economic growth in Tanzania. FDI also tends to affect growth positively, while control variables such as high population growth and inflation appear to harm economic growth. Results also reveal that control variables such as trade openness and life expectancy improvement tend to increase real GDP growth. Moreover, a revealed negative, albeit weak, association between public and private investment suggests that the positive effect of domestic private investment on economic growth reduces when public investment-to-GDP ratio exceeds 8-10 percent. Thus, there is a great need for promoting domestic saving so as to encourage domestic investment for economic growth.

Keywords: FDI, public investment, domestic private investment, crowding out effect, economic growth

Procedia PDF Downloads 293
1485 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 78
1484 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 138
1483 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic

Authors: M. Iruleswari, A. Jeyapaul Murugan

Abstract:

Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.

Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table

Procedia PDF Downloads 461
1482 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor

Authors: Anuj Srivastava, Kuldeep Kumar

Abstract:

This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.

Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability

Procedia PDF Downloads 170
1481 Site Investigations and Mitigation Measures of Landslides in Sainj and Tirthan Valley of Kullu District, Himachal Pradesh, India

Authors: Laxmi Versain, R. S. Banshtu

Abstract:

Landslides are found to be the most commonly occurring geological hazards in the mountainous regions of the Himalaya. This mountainous zone is facing large number of seismic turbulences, climatic changes, and topography changes due to increasing urbanization. That eventually has lead several researchers working for best suitable methodologies to infer the ultimate results. Landslide Hazard Zonation has widely come as suitable method to know the appropriate factors that trigger the lansdslide phenomenon on higher reaches. Most vulnerable zones or zones of weaknesses are indentified and safe mitigation measures are to be suggested to mitigate and channelize the study of an effected area. Use of Landslide Hazard Zonation methodology in relative zones of weaknesses depend upon the data available for the particular site. The causative factors are identified and data is made available to infer the results. Factors like seismicity in mountainous region have closely associated to make the zones of thrust and faults or lineaments more vulnerable. Data related to soil, terrain, rainfall, geology, slope, nature of terrain, are found to be varied for various landforms and areas. Thus, the relative causes are to be identified and classified by giving specific weightage to each parameter. Factors which cause the instability of slopes are several and can be grouped to infer the potential modes of failure. The triggering factors of the landslides on the mountains are not uniform. The urbanization has crawled like ladder and emergence of concrete jungles are in a very fast pace on hilly region of Himalayas. The local terrains has largely been modified and hence instability of several zones are triggering at very fast pace. More strategic and pronounced methods are required to reduce the effect of landslide.

Keywords: zonation, LHZ, susceptible, weightages, methodology

Procedia PDF Downloads 198
1480 Performance Evaluation of a Very High-Resolution Satellite Telescope

Authors: Walid A. Attia, Taher M. Bazan, Fawzy Eltohamy, Mahmoud Fathy

Abstract:

System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality.

Keywords: modulation transfer function, national image interpretability rating scale, signal to noise ratio, satellite telescope performance evaluation

Procedia PDF Downloads 387
1479 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 300
1478 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 326
1477 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 169
1476 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading

Authors: Peter Shi

Abstract:

Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.

Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market

Procedia PDF Downloads 75
1475 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 441
1474 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator

Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters

Abstract:

Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.

Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation

Procedia PDF Downloads 131
1473 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 304
1472 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission

Authors: Bo Wang

Abstract:

As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.

Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement

Procedia PDF Downloads 347
1471 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 234
1470 Enabling Translanguaging in the EFL Classroom, Affordances of Learning and Reflections

Authors: Nada Alghali

Abstract:

Translanguaging pedagogy suggests a new perspective in language education relating to multilingualism; multilingual learners have one linguistic repertoire and not two or more separate language systems (García and Wei, 2014). When learners translanguage, they are able to draw on all their language features in a flexible and integrated way (Otheguy, García, & Reid, 2015). In the Foreign Language Classroom, however, the tendency to use the target language only is still advocated as a pedagogy. This study attempts to enable learners in the English as a foreign language classroom to draw on their full linguistic repertoire through collaborative reading lessons. In observations prior to this study, in a classroom where English only policy prevails, learners still used their first language in group discussions yet were constrained at times by the teacher’s language policies. Through strategically enabling translanguaging in reading lessons (Celic and Seltzer, 2011), this study has revealed that learners showed creative ways of language use for learning and reflected positively on thisexperience. This case study enabled two groups in two different proficiency level classrooms who are learning English as a foreign language in their first year at University in Saudi Arabia. Learners in the two groups wereobserved over six weeks and wereasked to reflect their learning every week. The same learners were also interviewed at the end of translanguaging weeks after completing a modified model of the learning reflection (Ash and Clayton, 2009). This study positions translanguaging as collaborative and agentive within a sociocultural framework of learning, positioning translanguaging as a resource for learning as well as a process of learning. Translanguaging learning episodes are elicited from classroom observations, artefacts, interviews, reflections, and focus groups, where they are analysed qualitatively following the sociocultural discourse analysis (Fairclough &Wodak, 1997; Mercer, 2004). Initial outcomes suggest functions of translanguaging in collaborative reading tasks and recommendations for a collaborative translanguaging pedagogy approach in the EFL classroom.

Keywords: translanguaging, EFL, sociocultural theory, discourse analysis

Procedia PDF Downloads 185
1469 Effect of Mobile Phone Text Message Reminders on Adherence to Routine Prenatal Iron/Folic Acid Supplement among Pregnant Women: A Pilot Study

Authors: Nneka U. Igboeli, Maxwell O. Adibe

Abstract:

Iron and folate supplementation in pregnancy are important interventions that prevent maternal anaemia and fetal anomaly. Thus, daily oral doses of iron and folic acid are recommended throughout pregnancy as part of antenatal care. However, low adherence has been a major drawback leading to low effectiveness of these programs. The effect of mobile text message reminders to pregnant women to take their routine medications on adherence was evaluated in this study. The first 100 women who consented to the study were recruited and randomized to either receive a text message reminder on adherence to routine medications or not. Adherence was assessed using the 8-item Modified Morisky Adherence Scale (8-MMAS). The folders of successfully recruited women were tagged with the a study number assigned to each of them. The womens’ phone numbers were collected and these were used to send text messages reminders on adhering to routine drugs only to women in the intervention group. The text messages were sent three times per week for a period of four weeks with an adherence reassessment at the one month follow-up antenatal visit for recruited women. At one month follow-up, the lost to follow-up were 6 (16%) women for the intervention group and 17 (34%) for the control group. The across group mean difference in adherence score was 0.07 (-0.96 – 1.10) at baseline and 0.3 (-0.31 – 0.92) after intervention, both insignificant at p > 0.05. The within group change were increases of 0.58 (0.00 – 1.16) (p = 0.05) from baseline for the intervention group and a 0.35 (-0.51 – 1.20) (p = 0.395) for the control group. Non-significant increase in adherence scores were recorded for both groups. However, the increase in adherence scores of women in the intervention group was greater and may be potentially transformed into more positive results if the study period is increased with possibly reduced study drop-outs shows great promise for more positive results.

Keywords: adherence, mobile phone, pregnant women, reminders

Procedia PDF Downloads 178
1468 Enhanced Photocatalytic H₂ Production from H₂S on Metal Modified Cds-Zns Semiconductors

Authors: Maali-Amel Mersel, Lajos Fodor, Otto Horvath

Abstract:

Photocatalytic H₂ production by H₂S decomposition is regarded to be an environmentally friendly process to produce carbon-free energy through direct solar energy conversion. For this purpose, sulphide-based materials, as photocatalysts, were widely used due to their excellent solar spectrum responses and high photocatalytic activity. The loading of proper co-catalysts that are based on cheap and earth-abundant materials on those semiconductors was shown to play an important role in the improvement of their efficiency. In this research, CdS-ZnS composite was studied because of its controllable band gap and excellent performance for H₂ evolution under visible light irradiation. The effects of the modification of this photocatalyst with different types of materials and the influence of the preparation parameters on its H₂ production activity were investigated. The CdS-ZnS composite with an enhanced photocatalytic activity for H₂ production was synthesized from ammine complexes. Two types of modification were used: compounds of Ni-group metals (NiS, PdS, and Pt) were applied as co-catalyst on the surface of CdS-ZnS semiconductor, while NiS, MnS, CoS, Ag₂S, and CuS were used as a dopant in the bulk of the catalyst. It was found that 0.1% of noble metals didn’t remarkably influence the photocatalytic activity, while the modification with 0.5% of NiS was shown to be more efficient in the bulk than on the surface. The modification with other types of metals results in a decrease of the rate of H₂ production, while the co-doping seems to be more promising. The preparation parameters (such as the amount of ammonia to form the ammine complexes, the order of the preparation steps together with the hydrothermal treatment) were also found to highly influence the rate of H₂ production. SEM, EDS and DRS analyses were made to reveal the structure of the most efficient photocatalysts. Moreover, the detection of the conduction band electron on the surface of the catalyst was also investigated. The excellent photoactivity of the CdS-ZnS catalysts with and without modification encourages further investigations to enhance the hydrogen generation by optimization of the reaction conditions.

Keywords: H₂S, photoactivity, photocatalytic H₂ production, CdS-ZnS

Procedia PDF Downloads 134
1467 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams

Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann

Abstract:

A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.

Keywords: damage mechanics, finite element, steel structures, web openings

Procedia PDF Downloads 177
1466 Indigenous Hair Treatment in Abyssinia

Authors: Makda Yeshitela Kifele

Abstract:

Hair treatment prevents the hair from loss of volume, changing colour, and damaging its properties of the hair. Hair is the beauty of human beings that makes people beautiful and takes the other hearts to see them and to give them an appreciation for their effort to treat their hair and save it from damage. There are different methods to protect human hair from loss and damage that influence human psychology better than the problems. Chemicals products are available in the world that keeps safely the hair and provide beauty for the hair. But chemical products have side effects and are not cost-effective. Even some of the chemicals are allergic for users and left some changes in the hair. Indigenous hair treatment is an effective method that reduces the bad effects and the problems of the chemical that are lefts in human being’slife. Indigenous hair treatment can treat the hair safely and effectively that does not have much effect or spots in the human hair the users rather, it improves some attributes of the hair such that shine, quality, quantity improvements, length, and flexibility can be modified by these indigenous treatments. Rate is the local plant that plays a significant role in hair treatment. Rate is the local plant that can be available everywhere in the country, and anybody can be used for hair treatments. For this research, 50 women are identified as sample populations with different hair characteristics. The treatments were collected from the fields and squeezed into the pots to be prepared as specimens. The squeezed plants were deposited in the refrigerator for three days with some amounts of salts to prevent some bacteria. Chemical analysis has been done to sort out some detrimental substances. So the result showed that there are no detrimental substances that affect the hair properties and the health of the users. The sample population used the oil for one month without any other oily cosmetics that disturbs the treatment. The output is very effective and brings shining the hair, preventing greying of the hair, showing fast-growing, increasing the volume of the hair, and becoming flexible and curly, straight hair, thicker, and with no allergic effects.

Keywords: indigenous, chemicals, curly, treatment

Procedia PDF Downloads 111
1465 Association of Musculoskeletal and Radiological Features with Clinical and Serological Findings in Systemic Sclerosis: A Single-Centre Registry Study

Authors: Rezvan Hosseinian

Abstract:

Aim: Systemic sclerosis (SSc) is a chronic connective tissue disease with the clinical hallmark of skin thickening and tethering. The correlation of musculoskeletal features with other parameters should be considered in SSc patients. Methods: We reviewed the records of all patients who had more than one visit and standard anteroposterior radiography of hand. We used univariate analysis, and factors with p<0.05 were included in logistic regression to find out dependent factors. Results: Overall, 180 SSc patients were enrolled in our study, 161 (89.4%) of whom were women. The median age (IQR) was 47.0 years (16), and 52% had a diffuse subtype of the disease. In multivariate analysis, tendon friction rubs (TFRs) were associated with the presence of calcinosis, muscle tenderness, and flexion contracture (FC) on physical examination (p<0.05). Arthritis showed no differences in the two subtypes of the disease (p=0.98), and in multivariate analysis, there were no correlations between radiographic arthritis and serological and clinical features. The radiographic results indicated that disease duration correlated with joint erosion, acro-osteolysis, resorption of the distal ulna, calcinosis and radiologic FC (p< 0.05). Acro-osteolysis was more frequent in the dcSSc subtype, TFRs, and anti-TOPO I antibody. Radiologic FC showed an association with skin score, calcinosis and haematocrit <30% (p<0.05). Joint flexion on radiography was associated with disease duration, modified Rodnan skin score, calcinosis, and low hematocrit (P<0.01). Conclusion: Disease duration was a main dependent factor for developing joint erosion, acro-osteolysis, bone resorption, calcinosis, and flexion contracture on hand radiography. Acro-osteolysis presented in the severe form of the disease. Acro-osteolysis was the only dependent variable associated with bone demineralization.

Keywords: disease subsets, hand radiography, joint erosion, sclerosis

Procedia PDF Downloads 95
1464 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 262
1463 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 138
1462 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 407
1461 Association of Musculoskeletal and Radiological Features with Clinical and Serological Findings in Systemic Sclerosis: A Single-Centre Registry Study

Authors: Nasrin Azarbani

Abstract:

Aim: Systemic sclerosis (SSc) is a chronic connective tissue disease with the clinical hallmark of skin thickening and tethering. Correlation of musculoskeletal features with other parameters should be considered in SSc patients. Methods: We reviewed the records of all patients who had more than one visit and standard anteroposterior radiography of hand. We used univariate analysis, and factors with p<0.05 were included in logistic regression to find out dependent factors. Results: Overall, 180 SSc patients were enrolled in our study, 161 (89.4%) of whom were women. Median age (IQR) was 47.0 years (16), and 52% had diffuse subtype of the disease. In multivariate analysis, tendon friction rubs (TFRs) was associated with the presence of calcinosis, muscle tenderness, and flexion contracture (FC) on physical examination (p<0.05). Arthritis showed no differences in the two subtypes of the disease (p=0.98), and in multivariate analysis, there were no correlations between radiographic arthritis and serological and clinical features. The radiographic results indicated that disease duration correlated with joint erosion, acro-osteolysis, resorption of distal ulna, calcinosis and radiologic FC (p< 0.05). Acro-osteolysis was more frequent in the dcSSc subtype, TFRs, and anti-TOPO I antibody. Radiologic FC showed an association with skin score, calcinosis and haematocrit <30% (p<0.05). Joint flexion on radiography was associated with disease duration, modified Rodnan skin score, calcinosis, and low haematocrit (P<0.01). Conclusion: Disease duration was a main dependent factor for developing joint erosion, acro-osteolysis, bone resorption, calcinosis, and flexion contracture on hand radiography. Acro-osteolysis presented in the severe form of the disease. Acro-osteolysis was the only dependent variable associated with bone demineralization.

Keywords: sclerosis, disease subsets, joint erosion, musculoskeletal

Procedia PDF Downloads 69