Search results for: solar cooling load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4674

Search results for: solar cooling load

294 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 26
293 Understanding the Health Issues of Impoverished Child Rag Pickers in India

Authors: Burhan Khan

Abstract:

Objective: This study aims to enhance the body of knowledge about the vulnerabilities of child waste pickers in solid waste management. The primary objective of this research is to investigate the occupational menaces and their potential harm to the health of child waste pickers. Material and Methods: The present study design is descriptive in nature and involves children aged 5 through 14, who were rummaging through garbage in the roads and streets of Aligarh city, Uttar Pradesh. The researcher adopted an empirical approach to interview 65 participants (27 boys and 38 girls) across Aligarh city, Uttar Pradesh. The majority of the participants are Muslims (76.9 %), scheduled Castes (13.8 %), and Hindus (9.2 %). Out of 65 participants, 73.8% of children were migrated within the last five years. The primary data were analysed by utilising descriptive statistics, including frequencies, cross-tabs, means, and percentages. Results: The results show that the vast majority of children (87.7%) have experienced superficial injuries or open wound at their work. More than 32% were suffering from respiratory problems such as coughing, wheezing and short of breath, close to 37% reported skin problems like allergy, irritation and bruising and 4.6% had eye problems such as pain and irritation in eyes. Nearly 78% of children lift and carry a heavy load like large garbage bags. Over 83% informed that they sort through refuse in a filthy environment such as open dumpsites, effluents, and runnels. Conclusion: This research provides pieces of evidence of how children are being tormented in the rag-picking sector. It has been observed that child rag pickers are susceptible to injuries or illnesses due to work-related risks and toxic environment. In India, there is no robust policy to address the concerns of waste pickers and laws to protect their rights. Consequently, these deprived communities of rag pickers, especially children, have become more vulnerable over time in India. Hence, this research paper calls for a quick response to the exigencies of child rag picker by developing a holistic approach that deals with education, medical care, sanitation, and nutrition for child rag pickers.

Keywords: child rag pickers, health impairments, occupational hazards, toxic environment

Procedia PDF Downloads 98
292 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy

Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi

Abstract:

The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.

Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance

Procedia PDF Downloads 151
291 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 174
290 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: photocatalytic concretes, titanium dioxide, architectural concretes, Lightweight Self-Compacting Concretes (LWSCC)

Procedia PDF Downloads 273
289 Diagrid Structural System

Authors: K. Raghu, Sree Harsha

Abstract:

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.

Keywords: diagrid, bracings, structural, building

Procedia PDF Downloads 357
288 The Roots of Amazonia’s Droughts and Floods: Complex Interactions of Pacific and Atlantic Sea-Surface Temperatures

Authors: Rosimeire Araújo Silva, Philip Martin Fearnside

Abstract:

Extreme droughts and floods in the Amazon have serious consequences for natural ecosystems and the human population in the region. The frequency of these events has increased in recent years, and projections of climate change predict greater frequency and intensity of these events. Understanding the links between these extreme events and different patterns of sea surface temperature in the Atlantic and Pacific Oceans is essential, both to improve the modeling of climate change and its consequences and to support efforts of adaptation in the region. The relationship between sea temperatures and events in the Amazon is much more complex than is usually assumed in climatic models. Warming and cooling of different parts of the oceans, as well as the interaction between simultaneous temperature changes in different parts of each ocean and between the two oceans, have specific consequences for the Amazon, with effects on precipitation that vary in different parts of the region. Simplistic generalities, such as the association between El Niño events and droughts in the Amazon, do not capture this complexity. We investigated the variability of Sea Surface Temperature (SST) in the Tropical Pacific Ocean during the period 1950-2022, using Empirical Orthogonal Functions (FOE), spectral analysis coherence and wavelet phase. The two were identified as the main modes of variability, which explain about 53,9% and 13,3%, respectively, of the total variance of the data. The spectral and coherence analysis and wavelets phase showed that the first selected mode represents the warming in the central part of the Pacific Ocean (the “Central El Niño”), while the second mode represents warming in the eastern part of the Pacific (the “Eastern El Niño The effects of the 1982-1983 and 1976-1977 El Niño events in the Amazon, although both events were characterized by an increase in sea surface temperatures in the Equatorial Pacific, the impact on rainfall in the Amazon was distinct. In the rainy season, from December to March, the sub-basins of the Japurá, Jutaí, Jatapu, Tapajós, Trombetas and Xingu rivers were the regions that showed the greatest reductions in rainfall associated with El Niño Central (1982-1983), while the sub-basins of the Javari, Purus, Negro and Madeira rivers had the most pronounced reductions in the year of Eastern El Niño (1976-1977). In the transition to the dry season, in April, the greatest reductions were associated with the Eastern El Niño year for the majority of the study region, with the exception only of the sub-basins of the Madeira, Trombetas and Xingu rivers, which had their associated reductions to Central El Niño. In the dry season from July to September, the sub-basins of the Japurá Jutaí Jatapu Javari Trombetas and Madeira rivers were the rivers that showed the greatest reductions in rainfall associated with El Niño Central, while the sub-basins of the Tapajós Purus Negro and Xingu rivers had the most pronounced reductions. In the Eastern El Niño year this season. In this way, it is possible to conclude that the Central (Eastern) El Niño controlled the reductions in soil moisture in the dry (rainy) season for all sub-basins shown in this study. Extreme drought events associated with these meteorological phenomena can lead to a significant increase in the occurrence of forest fires. These fires have a devastating impact on Amazonian vegetation, resulting in the irreparable loss of biodiversity and the release of large amounts of carbon stored in the forest, contributing to the increase in the greenhouse effect and global climate change.

Keywords: sea surface temperature, variability, climate, Amazon

Procedia PDF Downloads 35
287 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 31
286 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 324
285 Sustainability in Space: Material Efficiency in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.

Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 86
284 Transient Level in the Surge Chamber at the Robert-bourassa Generating Station

Authors: Maryam Kamali Nezhad

Abstract:

The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels.

Keywords: generating station, surge chamber, maximum transient level, hydroelectric power station, turbine-generator, reservoir

Procedia PDF Downloads 62
283 Fastidious Enteric Pathogens in HIV

Authors: S. Pathak, R. Lazarus

Abstract:

A 25-year-old male HIV patient (CD4 cells 20/µL and HIV viral load 14200000 copies/ml) with a past medical history of duodenal ulcer, pneumocystis carinii pneumonia, oesophageal candidiasis presented with fever and a seizure to hospital. The only recent travel had been a religious pilgrimage from Singapore to Malaysia 5 days prior; during the trip he sustained skin abrasions. The patient had recently started highly active antiretroviral therapy 2 months prior. Clinical examination was unremarkable other than a temperature of 38.8°C and perianal warts. Laboratory tests showed a leukocyte count 12.5x109 cells/L, haemoglobin 9.4 g/dL, normal biochemistry and a C-reactive protein 121 mg/L. CT head and MRI head were unremarkable and cerebrospinal fluid analysis performed after a delay (due to technical difficulties) of 11 days was unremarkable. Blood cultures (three sets) taken on admission showed Gram-negative rods in the anaerobic bottles only at the end of incubation with culture result confirmed by molecular sequencing showing Helicobacter cinaedi. The patient was treated empirically with ceftriaxone for seven days and this was converted to oral co-amoxiclav for a further seven days after the blood cultures became positive. A Transthoracic echocardiogram was unremarkable. The patient made a full recovery. Helicobacter cinaedi is a gram-negative anaerobic fastidious organism affecting patients with comorbidity. Infection may manifest as cellulitius, colitis or as in this case as bloodstream infection – the latter is often attributed to faeco-oral infection. Laboratory identification requires prolonged culture. Therapeutic options may be limited by resistance to macrolides and fluoroquinolones. The likely pathogen inoculation routes in the case described include gastrointestinal translocation due to proctitis at the site of perianal warts, or breach of the skin via abrasions occurring during the pilgrimage. Such organisms are increasing in prevalence as our patient population ages and patients have multiple comorbidities including HIV. It may be necessary in patients with unexplained fever to prolong incubation of sterile sites including blood in order to identify this unusual fastidious organism.

Keywords: fastidious, Helicobacter cinaedi, HIV, immunocompromised

Procedia PDF Downloads 358
282 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta

Abstract:

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Keywords: biomass, fluorescent lamp, infrared radiation, microalgae

Procedia PDF Downloads 166
281 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 312
280 Exposure to Nature: An Underutilized Component of Student Mental Health

Authors: Jeremy Bekker, Guy Salazar

Abstract:

Introduction: Nature-exposure interventions on university campuses may serve as an effective addition to overburdened counseling and student support centers. Nature-exposure interventions can work as a preventative well-being enhancement measure on campuses, which can be used adjacently with existing health resources. Specifically, this paper analyzes how spending time in nature impacts psychological well-being, cognitive functioning, and physical health. The poster covers the core findings and recommendations of this paper, which has been previously published in the BYU undergraduate psychology journal Intuition. Research Goals and Method: The goal of this paper was to outline the potential benefits of nature exposure for students’ physical health, mental well-being, and academic success. Another objective of this paper was to outline potential research-based interventions that use campus green spaces to improve student outcomes. Given that the core objective of this paper was to identify and establish research-based nature exposure interventions that could be used on college campuses, a broad literature review focused on these areas. Specifically, the databases Scopus and PsycINFO were used to screen for research focused on psychological well-being, physical health, cognitive functioning, and nature exposure interventions. Outcomes: Nature exposure has been shown to help increase positive affect, life satisfaction, happiness, coping ability and subjective well-being. Further, nature exposure has been shown to decrease negative affect, lower mental distress, reduce cognitive load, and decrease negative psychological symptoms. Finally, nature exposure has been shown to lead to better physical health. Findings and Recommendations: Potential interventions include adding green space to university buildings and grounds, dedicating already natural environments as nature restoration areas, and providing means for outdoor excursions. Potential limitations and suggested areas for future research are also addressed. Many campuses already contain green spaces, defined as any part of an environment that is predominately made of natural elements, and these green spaces comprise an untapped resource that is relatively cheap and simple.

Keywords: nature exposure, preventative care, undergraduate mental health, well-being intervention

Procedia PDF Downloads 177
279 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 352
278 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 93
277 A Re-Evaluation of Green Architecture and Its Contributions to Environmental Sustainability

Authors: Po-Ching Wang

Abstract:

Considering the notable effects of natural resource consumption and impacts on fragile ecosystems, reflection on contemporary sustainable design is critical. Nevertheless, the idea of ‘green’ has been misapplied and even abused, and, in fact, much damage to the environment has been done in its name. In 1996’s popular science fiction film Independence Day, an alien species, having exhausted the natural resources of one planet, moves on to another —a fairly obvious irony on contemporary human beings’ irresponsible use of the Earth’s natural resources in modern times. In fact, the human ambition to master nature and freely access the world’s resources has long been inherent in manifestos evinced by productions of the environmental design professions. Ron Herron’s Walking City, an experimental architectural piece of 1964, is one example that comes to mind here. For this design concept, the architect imagined a gigantic nomadic urban aggregate that by way of an insect-like robotic carrier would move all over the world, on land and sea, to wherever its inhabitants want. Given the contemporary crisis regarding natural resources, recently ideas pertinent to structuring a sustainable environment have been attracting much interest in architecture, a field that has been accused of significantly contributing to ecosystem degradation. Great art, such as Fallingwater building, has been regarded as nature-friendly, but its notion of ‘green’ might be inadequate in the face of the resource demands made by human populations today. This research suggests a more conservative and scrupulous attitude to attempting to modify nature for architectural settings. Designs that pursue spiritual or metaphysical interconnections through anthropocentric aesthetics are not sufficient to benefit ecosystem integrity; though high-tech energy-saving processes may contribute to a fine-scale sustainability, they may ultimately cause catastrophe in the global scale. Design with frugality is proposed in order to actively reduce environmental load. The aesthetic taste and ecological sensibility of design professions and the public alike may have to be reshaped in order to make the goals of environmental sustainability viable.

Keywords: anthropocentric aesthetic, aquarium sustainability, biosphere 2, ecological aesthetic, ecological footprint, frugal design

Procedia PDF Downloads 181
276 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 106
275 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana

Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki

Abstract:

The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.

Keywords: electricity efficiency, high losses, human security, power outage

Procedia PDF Downloads 252
274 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar

Authors: Bengi Hakguder Taze, Sevcan Unluturk

Abstract:

Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.

Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot

Procedia PDF Downloads 115
273 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean

Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi

Abstract:

The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.

Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean

Procedia PDF Downloads 208
272 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 215
271 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure

Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai

Abstract:

Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.

Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure

Procedia PDF Downloads 109
270 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 49
269 Statistical Analysis to Compare between Smart City and Traditional Housing

Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh

Abstract:

Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and design

Keywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving

Procedia PDF Downloads 90
268 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 212
267 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 223
266 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)

Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi

Abstract:

The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.

Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal

Procedia PDF Downloads 85
265 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 255