Search results for: industrial zone
420 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India
Authors: D. S. Jaya, G. P. Deepthi
Abstract:
Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability
Procedia PDF Downloads 263419 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act
Authors: Maria Jędrzejczak, Patryk Pieniążek
Abstract:
The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.Keywords: data protection law, personal data, AI law, personal data breach
Procedia PDF Downloads 65418 Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid
Authors: Alexandra C. Blaga, Dan Caşcaval, Alexandra Tucaliuc, Madalina Poştaru, Anca I. Galaction
Abstract:
Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5.Keywords: amino acids, di-(2-ethylhexyl) phosphoric acid, reactive extraction, selective extraction
Procedia PDF Downloads 431417 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 409416 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes
Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun
Abstract:
Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces
Procedia PDF Downloads 146415 Estimation of Morbidity Level of Industrial Labour Conditions at Zestafoni Ferroalloy Plant
Authors: M. Turmanauli, T. Todua, O. Gvaberidze, R. Javakhadze, N. Chkhaidze, N. Khatiashvili
Abstract:
Background: Mining process has the significant influence on human health and quality of life. In recent years the events in Georgia were reflected on the industry working process, especially minimal requirements of labor safety, hygiene standards of workplace and the regime of work and rest are not observed. This situation is often caused by the lack of responsibility, awareness, and knowledge both of workers and employers. The control of working conditions and its protection has been worsened in many of industries. Materials and Methods: For evaluation of the current situation the prospective epidemiological study by face to face interview method was conducted at Georgian “Manganese Zestafoni Ferroalloy Plant” in 2011-2013. 65.7% of employees (1428 bulletin) were surveyed and the incidence rates of temporary disability days were studied. Results: The average length of a temporary disability single accident was studied taking into consideration as sex groups as well as the whole cohort. According to the classes of harmfulness the following results were received: Class 2.0-10.3%; 3.1-12.4%; 3.2-35.1%; 3.3-12.1%; 3.4-17.6%; 4.0-12.5%. Among the employees 47.5% and 83.1% were tobacco and alcohol consumers respectively. According to the age groups and years of work on the base of previous experience ≥50 ages and ≥21 years of work data prevalence respectively. The obtained data revealed increased morbidity rate according to age and years of work. It was found that the bone and articulate system and connective tissue diseases, aggravation of chronic respiratory diseases, ischemic heart diseases, hypertension and cerebral blood discirculation were the leading among the other diseases. High prevalence of morbidity observed in the workplace with not satisfactory labor conditions from the hygienic point of view. Conclusion: According to received data the causes of morbidity are the followings: unsafety labor conditions; incomplete of preventive medical examinations (preliminary and periodic); lack of access to appropriate health care services; derangement of gathering, recording, and analysis of morbidity data. This epidemiological study was conducted at the JSC “Manganese Ferro Alloy Plant” according to State program “ Prevention of Occupational Diseases” (Program code is 35 03 02 05).Keywords: occupational health, mining process, morbidity level, cerebral blood discirculation
Procedia PDF Downloads 428414 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 372413 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 387412 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer
Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi
Abstract:
Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales
Procedia PDF Downloads 124411 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete
Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan
Abstract:
Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.Keywords: characterization, furnace, pozzolanic behavior, rice husk ash
Procedia PDF Downloads 107410 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling
Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry
Procedia PDF Downloads 21409 Analysis in Mexico on Workers Performing Highly Repetitive Movements with Sensory Thermography in the Surface of the Wrist and Elbows
Authors: Sandra K. Enriquez, Claudia Camargo, Jesús E. Olguín, Juan A. López, German Galindo
Abstract:
Currently companies have increased the number of disorders of cumulative trauma (CTDs), these are increasing significantly due to the Highly Repetitive Movements (HRM) performed in workstations, which causes economic losses to businesses, due to temporary and permanent disabilities of workers. This analysis focuses on the prevention of disorders caused by: repeatability, duration and effort; And focuses on reducing cumulative trauma disorders such as occupational diseases using sensory thermography as a noninvasive method, the above is to evaluate the injuries could have workers to perform repetitive motions. Objectives: The aim is to define rest periods or job rotation before they generate a CTD, this sensory thermography by analyzing changes in temperature patterns on wrists and elbows when the worker is performing HRM over a period of time 2 hours and 30 minutes. Information on non-work variables such as wrist and elbow injuries, weight, gender, age, among others, and work variables such as temperature workspace, repetitiveness and duration also met. Methodology: The analysis to 4 industrial designers, 2 men and 2 women to be specific was conducted in a business in normal health for a period of 12 days, using the following time ranges: the first day for every 90 minutes continuous work were asked to rest 5 minutes, the second day for every 90 minutes of continuous work were asked to rest 10 minutes, the same to work 60 and 30 minutes straight. Each worker was tested with 6 different ranges at least twice. This analysis was performed in a controlled room temperature between 20 and 25 ° C, and a time to stabilize the temperature of the wrists and elbows than 20 minutes at the beginning and end of the analysis. Results: The range time of 90 minutes working continuous and a rest of 5 minutes of activity is where the maximum temperature (Tmax) was registered in the wrists and elbows in the office, we found the Tmax was 35.79 ° C with a difference of 2.79 ° C between the initial and final temperature of the left elbow presented at the individual 4 during the 86 minutes, in of range in 90 minutes continuously working and rested for 5 minutes of your activity. Conclusions: It is possible with this alternative technology is sensory thermography predict ranges of rotation or rest for the prevention of CTD to perform HRM work activities, obtaining with this reduce occupational disease, quotas by health agencies and increasing the quality of life of workers, taking this technology a cost-benefit acceptable in the future.Keywords: sensory thermography, temperature, cumulative trauma disorder (CTD), highly repetitive movement (HRM)
Procedia PDF Downloads 429408 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method
Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi
Abstract:
Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.Keywords: exotoxin, nanobiosensor, recognition, Staphylococcus aureus
Procedia PDF Downloads 385407 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling
Authors: Moustafa Osman Mohammed
Abstract:
The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology
Procedia PDF Downloads 68406 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 56405 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria
Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe
Abstract:
Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy
Procedia PDF Downloads 326404 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification
Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger
Abstract:
Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell
Procedia PDF Downloads 43403 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis
Authors: V. V. Srinivasu, Jayashree Das
Abstract:
Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.Keywords: co-doping, electro spin resonance, microwave absorption, spintronics
Procedia PDF Downloads 339402 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions
Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation
Procedia PDF Downloads 265401 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters
Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra
Abstract:
Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties
Procedia PDF Downloads 129400 Cultural Heritage Resources for Tourism, Two Countries – Two Approaches: A Comparative Analysis of Cultural Tourism Products in Turkey and Austria
Authors: Irfan Arikan, George Christian Steckenbauer
Abstract:
Turkey and Austria are examples for highly developed tourism destinations, where tourism providers use cultural heritage and regional natural resources to develop modern tourism products in order to be successful on increasingly competitive international tourism markets. The use and exploitation of these resources follow on the one hand international standards of tourism marketing (as ‘sustainability’). Therefore, we find highly comparable internationalized products in these destinations (like hotel products, museums, spas etc.). On the other hand, development standards and processes strongly depend on local, regional and national cultures, which influence the way how people work, cooperate, think and create. Thus, cultural factors also influence the attitude towards cultural heritage and natural resources and the way, how these resources are used for the creation of tourism products. This leads to differences in the development of tourism products on several levels: 1. In the selection of cultural heritage and natural resources for the product development process 2. In the processes, how tourism products are created 3. In the way, how providers and marketing organisations work with tourism products based on cultural heritage or natural resources. Aim of this paper is to discover differences in these dimensions by analysing and comparing examples of tourism products in Turkey and Austria, both countries with a highly developed, high professional tourism industry and rich experience of stakeholders in tourism industry in the field of product development and marketing. The cases are selected from the following fields: + Cultural tourism / heritage tourism + City tourism + Industrial heritage tourism + Nature and outdoor tourism + Health tourism The cases are analysed based on available secondary data (as several cases are scientifically described) and expert interviews with local and regional stakeholders of tourism industry and tourism experts. The available primary and secondary data will be analysed and displayed in a comparative structure that allows to derive answers to the above stated research question. The result of the project therefore will be a more precise picture about the influence of cultural differences on the use and exploitation of resources in the field of tourism that allows developing recommendations for tourism industry, which must be taken into consideration to assure cultural and natural resources are treated in a sustainable and responsible way. The authors will edit these culture-cross recommendations in form of a ‘check-list’ that can be used as a ‘guideline’ for tourism professionals in the field of product development and marketing and therefore connects theoretical research to the field of practical application and closes the gap between academic research and the field of tourism practice.Keywords: cultural heritage, natural resources, Austria, Turkey
Procedia PDF Downloads 492399 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel
Authors: M. El-haj, Z. Olama, H. Holail
Abstract:
Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi
Procedia PDF Downloads 411398 Changing Employment Relations Practices in Hong Kong: Cases of Two Multinational Retail Banks since 1997
Authors: Teresa Shuk-Ching Poon
Abstract:
This paper sets out to examine the changing employment relations practices in Hong Kong’s retail banking sector over a period of more than 10 years. The major objective of the research is to examine whether and to what extent local institutional influences have overshadowed global market forces in shaping strategic management decisions and employment relations practices in Hong Kong, with a view to drawing implications to comparative employment relations studies. Examining the changing pattern of employment relations, this paper finds the industrial relations strategic choice model (Kochan, McKersie and Cappelli, 1984) appropriate to use as a framework for the study. Four broad aspects of employment relations are examined, including work organisation and job design; staffing and labour adjustment; performance appraisal, compensation and employee development; and labour unions and employment relations. Changes in the employment relations practices in two multinational retail banks operated in Hong Kong are examined in detail. The retail banking sector in Hong Kong is chosen as a case to examine as it is a highly competitive segment in the financial service industry very much susceptible to global market influences. This is well illustrated by the fact that Hong Kong was hit hard by both the Asian and the Global Financial Crises. This sector is also subject to increasing institutional influences, especially after the return of Hong Kong’s sovereignty to the People’s Republic of China (PRC) since 1997. The case study method is used as it is a suitable research design able to capture the complex institutional and environmental context which is the subject-matter to be examined in the paper. The paper concludes that operation of the retail banks in Hong Kong has been subject to both institutional and global market changes at different points in time. Information obtained from the two cases examined tends to support the conclusion that the relative significance of institutional as against global market factors in influencing retail banks’ operation and their employment relations practices is depended very much on the time in which these influences emerged and the scale and intensity of these influences. This case study highlights the importance of placing comparative employment relations studies within a context where employment relations practices in different countries or different regions/cities within the same country could be examined and compared over a longer period of time to make the comparison more meaningful.Keywords: employment relations, institutional influences, global market forces, strategic management decisions, retail banks, Hong Kong
Procedia PDF Downloads 402397 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 146396 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques
Authors: Imed Feki, Faouzi Msahli
Abstract:
Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique
Procedia PDF Downloads 605395 Effect of the Orifice Plate Specifications on Coefficient of Discharge
Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer
Abstract:
On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications
Procedia PDF Downloads 119394 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 218393 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds
Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo
Abstract:
Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins
Procedia PDF Downloads 433392 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis
Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri
Abstract:
In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer
Procedia PDF Downloads 85391 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 31