Search results for: genetic algorithm
377 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 135376 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules
Authors: Michael Naderhirn, Marco Pavone
Abstract:
Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.Keywords: formal system verification, reachability, real time controller, hybrid system
Procedia PDF Downloads 241375 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures
Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani
Abstract:
Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.Keywords: semantic search engine, Google indexing, query expansion, similarity measures
Procedia PDF Downloads 425374 Agile Software Effort Estimation Using Regression Techniques
Authors: Mikiyas Adugna
Abstract:
Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.Keywords: agile software development, effort estimation, elastic net regression, LASSO
Procedia PDF Downloads 72373 Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics
Authors: Su Mon Saw, Joe Rothnagel
Abstract:
Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics.Keywords: bioinformatics, HEK293 cells, liquid chromatography-mass spectrometry, ProteinPilot, Strong Cation Exchange Chromatography, SDS-PAGE, sPEPs
Procedia PDF Downloads 188372 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system
Procedia PDF Downloads 272371 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 135370 Numerical Solution of Portfolio Selecting Semi-Infinite Problem
Authors: Alina Fedossova, Jose Jorge Sierra Molina
Abstract:
SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution
Procedia PDF Downloads 309369 Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function
Authors: Shiv Jyoti Pandey, Shveta Puri, G. M. Bhat, Neha Raina
Abstract:
The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region.Keywords: H-K stacking, Poisson’s ratios, receiver function, teleseismic
Procedia PDF Downloads 248368 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 25367 Genetic Polymorphism and Insilico Study Epitope Block 2 MSP1 Gene of Plasmodium falciparum Isolate Endemic Jayapura
Authors: Arsyam Mawardi, Sony Suhandono, Azzania Fibriani, Fifi Fitriyah Masduki
Abstract:
Malaria is an infectious disease caused by Plasmodium sp. This disease has a high prevalence in Indonesia, especially in Jayapura. The vaccine that is currently being developed has not been effective in overcoming malaria. This is due to the high polymorphism in the Plasmodium genome especially in areas that encode Plasmodium surface proteins. Merozoite Surface Protein 1 (MSP1) Plasmodium falciparum is a surface protein that plays a role in the invasion process in human erythrocytes through the interaction of Glycophorin A protein receptors and sialic acid in erythrocytes with Reticulocyte Binding Proteins (RBP) and Duffy Adhesion Protein (DAP) ligands in merozoites. MSP1 can be targeted to be a specific antigen and predicted epitope area which will be used for the development of diagnostic and malaria vaccine therapy. MSP1 consists of 17 blocks, each block is dimorphic, and has been marked as the K1 and MAD20 alleles. Exceptions only in block 2, because it has 3 alleles, among others K1, MAD20 and RO33. These polymorphisms cause allelic variations and implicate the severity of patients infected P. falciparum. In addition, polymorphism of MSP1 in Jayapura isolates has not been reported so it is interesting to be further identified and projected as a specific antigen. Therefore, in this study, we analyzed the allele polymorphism as well as detected the MSP1 epitope antigen candidate on block 2 P. falciparum. Clinical samples of selected malaria patients followed the consecutive sampling method, examining malaria parasites with blood preparations on glass objects observed through a microscope. Plasmodium DNA was isolated from the blood of malarial positive patients. The block 2 MSP1 gene was amplified using PCR method and cloned using the pGEM-T easy vector then transformed to TOP'10 E.coli. Positive colonies selection was performed with blue-white screening. The existence of target DNA was confirmed by PCR colonies and DNA sequencing methods. Furthermore, DNA sequence analysis was done through alignment and formation of a phylogenetic tree using MEGA 6 software and insilico analysis using IEDB software to predict epitope candidate for P. falciparum. A total of 15 patient samples have been isolated from Plasmodium DNA. PCR amplification results show the target gene size about ± 1049 bp. The results of MSP1 nucleotide alignment analysis reveal that block 2 MSP1 genes derived from the sample of malarial patients were distributed in four different allele family groups, K1 (7), MAD20 (1), RO33 (0) and MSP1_Jayapura (10) alleles. The most commonly appears of the detected allele is MSP1_Jayapura single allele. There was no significant association between sex variables, age, the density of parasitemia and alel variation (Mann Whitney, U > 0.05), while symptomatic signs have a significant difference as a trigger of detectable allele variation (U < 0.05). In this research, insilico study shows that there is a new epitope antigen candidate from the MSP1_Jayapura allele and it is predicted to be recognized by B cells with 17 amino acid lengths in the amino acid sequence 187 to 203.Keywords: epitope candidate, insilico analysis, MSP1 P. falciparum, polymorphism
Procedia PDF Downloads 180366 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 108365 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 107364 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria
Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo
Abstract:
In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices
Procedia PDF Downloads 81363 Against the Philosophical-Scientific Racial Project of Biologizing Race
Authors: Anthony F. Peressini
Abstract:
The concept of race has recently come prominently back into discussion in the context of medicine and medical science, along with renewed effort to biologize racial concepts. This paper argues that this renewed effort to biologize race by way of medicine and population genetics fail on their own terms, and more importantly, that the philosophical project of biologizing race ought to be recognized for what it is—a retrograde racial project—and abandoned. There is clear agreement that standard racial categories and concepts cannot be grounded in the old way of racial naturalism, which understand race as a real, interest-independent biological/metaphysical category in which its members share “physical, moral, intellectual, and cultural characteristics.” But equally clear is the very real and pervasive presence of racial concepts in individual and collective consciousness and behavior, and so it remains a pressing area in which to seek deeper understanding. Recent philosophical work has endeavored to reconcile these two observations by developing a “thin” conception of race, grounded in scientific concepts but without the moral and metaphysical content. Such “thin,” science-based analyses take the “commonsense” or “folk” sense of race as it functions in contemporary society as the starting point for their philosophic-scientific projects to biologize racial concepts. A “philosophic-scientific analysis” is a special case of the cornerstone of analytic philosophy: a conceptual analysis. That is, a rendering of a concept into the more perspicuous concepts that constitute it. Thus a philosophic-scientific account of a concept is an attempt to work out an analysis of a concept that makes use of empirical science's insights to ground, legitimate and explicate the target concept in terms of clearer concepts informed by empirical results. The focus in this paper is on three recent philosophic-scientific cases for retaining “race” that all share this general analytic schema, but that make use of “medical necessity,” population genetics, and human genetic clustering, respectively. After arguing that each of these three approaches suffers from internal difficulties, the paper considers the general analytic schema employed by such biologizations of race. While such endeavors are inevitably prefaced with the disclaimer that the theory to follow is non-essentialist and non-racialist, the case will be made that such efforts are not neutral scientific or philosophical projects but rather are what sociologists call a racial project, that is, one of many competing efforts that conjoin a representation of what race means to specific efforts to determine social and institutional arrangements of power, resources, authority, etc. Accordingly, philosophic-scientific biologizations of race, since they begin from and condition their analyses on “folk” conceptions, cannot pretend to be “prior to” other disciplinary insights, nor to transcend the social-political dynamics involved in formulating theories of race. As a result, such traditional philosophical efforts can be seen to be disciplinarily parochial and to address only a caricature of a large and important human problem—and thereby further contributing to the unfortunate isolation of philosophical thinking about race from other disciplines.Keywords: population genetics, ontology of race, race-based medicine, racial formation theory, racial projects, racism, social construction
Procedia PDF Downloads 273362 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design
Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad
Abstract:
In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method
Procedia PDF Downloads 243361 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator
Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain
Abstract:
Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.Keywords: percent depth dose, flatness, symmetry, golden beam data
Procedia PDF Downloads 489360 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array
Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi
Abstract:
Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.Keywords: acoustic sensing, direction of arrival, drone detection, microphone array
Procedia PDF Downloads 160359 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles
Authors: Dipak Sen, Rajdeep Ghosh
Abstract:
This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.Keywords: friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio
Procedia PDF Downloads 372358 Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker
Authors: Banafsheh Nikmehr, Mohsen Bahrami, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Mallory Pitts, Tolga B. Mesen, Tamer M. Yalcinkaya
Abstract:
The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies.Keywords: IVF, embryo, euploidy, aneuploidy, morphokinteic
Procedia PDF Downloads 88357 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 120356 Oat Bran Associated with Nutritional Counseling in Treating Obesity and Other Risk Factors for Cardiovascular Disease
Authors: Simone Raimondi De Souza, Glaucia Maria Moraes De Oliveira, Ronir Raggio Luiz, Glorimar Rosa
Abstract:
Introduction: Obesity is among the main risk factors for cardiovascular disease (CVD). Genesis is multifactorial, including genetic, hormonal and environmental factors disorders, among which inadequate feeding pattern, for which nutritional counseling strategies have proven effective. The consumption of beta-glucans (soluble fibers that reportedly promote satiety) present in oat bran can be an effective strategy for preventing and treating obesity. Other benefits have been observed with oat bran consumption, such as reduction of hypercholesterolemia and hyperglycemia, two other risk factors for CVD. Objectives: To analyze the effect of oat bran consumption associated with nutritional counseling in reducing body mass index (BMI), blood cholesterol, glucose profile, waist and neck circumference in obese individuals, and to evaluate the change in eating pattern. Methods: clinical trial, randomized, double-blind, placebo-controlled, lasting 90 days with adults of both genders, with BMI ≥30kg/m2. The study was approved by the Ethics in Research involving human beings in a public institute of cardiology, in Rio de Janeiro, Brazil. Individuals were invited to participate and accepted formally by signing the Terms of Consent. Participants were randomized into oat bran group (gOB) or placebo group (gPCB) and received, respectively: morning prepared consisting of 40g oat bran, 30g of skimmed milk powder and 1g sweetener sucralose; refined flour 40g rice, 30g of milk powder and 1g sweetener sucralose. The Ten Steps to Healthy Eating, of Brazilian Ministry of Health were used to support the nutritional counseling. Variables analyzed: gender; age; BMI, waist circumference (WC) neck circumference (NC); systolic blood pressure (SBP); diastolic blood pressure (DBP); food consumption, total cholesterol (TC), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), non-HDL cholesterol (nHDLc), triglycerides (TG), fasting glucose (FG), fasting insulin (FI) and HOMA-IR. Dietary intake was assessed by 24-hour dietary recall. The Diet Quality Index revised for the Brazilian population (IQD-R) assessed quality of feeding pattern. Statistical analyzes were performed using SPSS version 21, considering statistically significant p-value less than 0.05. Results: A total of 38 participants were included, age = 50 ± 7,6years, 63% women. 19 subjects were placed in gOB and 19 in gPCB. After intervention, statistically significant reductions were observed in the following parameters: in gOB: IQD-R, TC, LDL-c, nHDL-c, FI, SBP, DBP, BMI, WC, NC; in gPCB: IQD-R, LDL-c, SBP, DBP, BMI, WC, NC. No statistically significant differences were observed in the results between groups. Conclusion: Our results reinforce nutritional counseling as important strategy for prevention and treatment of obesity and suggest that inclusion of oat bran in daily diet can bring additional benefits controlling risk factors for CVD. More studies are needed to establish all benefits of oat bran to human health as well as the ideal daily dose for consumption.Keywords: oat bran, cardiovascular disease, nutritional counseling, obesity
Procedia PDF Downloads 231355 Testicular Differential MicroRNA Expression Derived Occupational Risk Factor Assessment in Idiopathic Non-obstructive Azoospermia Cases
Authors: Nisha Sharma, Mili Kaur, Ashutosh Halder, Seema Kaushal, Manoj Kumar, Manish Jain
Abstract:
Purpose: To investigate microRNAs (miRNA) as an epigenomic etiological factor in idiopathic non-obstructive azoospermia (NOA). In order to achieve the same, an association was seen between occupational exposure to radiation, thermal, and chemical factors and idiopathic cases of non-obstructive azoospermia, and later, testicular differential miRNA expression profiling was done in exposure group NOA cases. Method: It is a prospective study in which 200 apparent idiopathic male factor infertility cases, who have been advised to undergo testicular fine needle aspiration (FNA) evaluation, are recruited. A detailed occupational history was taken to understand the possible type of exposure due to the nature and duration of work. A total of 26 patients were excluded upon XY-FISH and Yq microdeletion tests due to the presence of genetic causes of infertility, 6 hypospermatogeneis (HS), six Sertoli cell-only syndrome (SCOS), and six normospermatogeneis patients testicular FNA samples were used for RNA isolation followed by small RNA sequencing and nCounter miRNA expression analysis. Differential miRNA expression profile of HS and SCOS patients was done. A web-based tool, miRNet, was used to predict the interacting compounds or chemicals using the shortlisted miRNAs with high fold change. The major limitation encountered in this study was the insufficient quantity of testicular FNA sample used for total RNA isolation, which resulted in a low yield and RNA integrity number (RIN) value. Therefore, the number of RNA samples admissible for differential miRNA expression analysis was very small in comparison to the total number of patients recruited. Results: Differential expression analysis revealed 69 down-regulated and 40 up-regulated miRNAs in HS and 66 down-regulated and 33 up-regulated miRNAs in SCOS in comparison to normospermatogenesis controls. The miRNA interaction analysis using the miRNet tool showed that the differential expression profiles of HS and SCOS patients were associated with arsenic trioxide, bisphenol-A, calcium sulphate, lithium, and cadmium. These compounds are reproductive toxins and might be responsible for miRNA-mediated epigenetic deregulation leading to NOA. The association between occupational risk factor exposure and the non-exposure group of NOA patients was not statistically significant, with ꭓ2 (3, N= 178) = 6.70, p= 0.082. The association between individual exposure groups (radiation, thermal, and chemical) and various sub-types of NOA is also not significant, with ꭓ2 (9, N= 178) = 15.06, p= 0.089. Functional analysis of HS and SCOS patients' miRNA profiles revealed some important miR-family members in terms of male fertility. The miR-181 family plays a role in the differentiation of spermatogonia and spermatocytes, as well as the transcriptional regulation of haploid germ cells. The miR-34 family is expressed in spermatocytes and round spermatids and is involved in the regulation of SSCs differentiation. Conclusion: The reproductive toxins might adopt the miRNA-mediated mechanism of disease development in idiopathic cases of NOA. Chemical compound induced; miRNA-mediated epigenetic deregulation can give a future perspective on the etiopathogenesis of the disease.Keywords: microRNA, non-obstructive azoospermia (NOA), occupational exposure, hypospermatogenesis (HS), Sertoli cell only syndrome (SCOS)
Procedia PDF Downloads 87354 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 342353 Suitability Evaluation of Human Settlements Using a Global Sensitivity Analysis Method: A Case Study in of China
Authors: Feifei Wu, Pius Babuna, Xiaohua Yang
Abstract:
The suitability evaluation of human settlements over time and space is essential to track potential challenges towards suitable human settlements and provide references for policy-makers. This study established a theoretical framework of human settlements based on the nature, human, economy, society and residence subsystems. Evaluation indicators were determined with the consideration of the coupling effect among subsystems. Based on the extended Fourier amplitude sensitivity test algorithm, the global sensitivity analysis that considered the coupling effect among indicators was used to determine the weights of indicators. The human settlement suitability was evaluated at both subsystems and comprehensive system levels in 30 provinces of China between 2000 and 2016. The findings were as follows: (1) human settlements suitability index (HSSI) values increased significantly in all 30 provinces from 2000 to 2016. Among the five subsystems, the suitability index of the residence subsystem in China exhibited the fastest growinggrowth, fol-lowed by the society and economy subsystems. (2) HSSI in eastern provinces with a developed economy was higher than that in western provinces with an underdeveloped economy. In con-trast, the growing rate of HSSI in eastern provinces was significantly higher than that in western provinces. (3) The inter-provincial difference of in HSSI decreased from 2000 to 2016. For sub-systems, it decreased for the residence system, whereas it increased for the economy system. (4) The suitability of the natural subsystem has become a limiting factor for the improvement of human settlements suitability, especially in economically developed provinces such as Beijing, Shanghai, and Guangdong. The results can be helpful to support decision-making and policy for improving the quality of human settlements in a broad nature, human, economy, society and residence context.Keywords: human settlements, suitability evaluation, extended fourier amplitude, human settlement suitability
Procedia PDF Downloads 81352 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 22351 Assessing the Clinicians’ Perspectives on Formulation with Minoxidil, Finasteride, and Capixyl™ in Androgenetic Alopecia: A Nationwide Dermatologist Survey
Authors: Sharma Aseem, Dhurat Rachita, Pawar Varsha, Khalse Manisha
Abstract:
Introduction: Androgenetic alopecia (AGA) is a prevalent condition characterized by progressive hair thinning driven by genetic and androgen-related factors. The current FDA-approved treatments include oral finasteride and topical minoxidil, though many patients seek combination therapies to enhance results. This study aims to evaluate the effectiveness of a combination therapy involving Minoxidil, Finasteride, and Capixyl™ based on feedback from dermatologists. Methodology: A survey, validated by experts, was distributed to 29 leading dermatologists across India (in Tier 1 and 2 cities). The survey examined real-world clinical experiences, focusing on patient outcomes and the overall effectiveness of the mentioned formulation. Results: Among the surveyed dermatologists, 41.4% identified women aged 35-40 as the most frequently diagnosed with female pattern hair loss. The combination therapy with Minoxidil, Finasteride, and Capixyl™ was utilized by 34.5% of dermatologists for over 60 patients per month. The majority highlighted the benefits of this combination therapy, which acts via multiple mechanisms, such as vasodilation and dihydrotestosterone (DHT) receptor blockade, resulting in improved hair regrowth. Additionally, patients demonstrated better clinical outcomes, enhanced compliance, and fewer side effects. Demographically, younger patients, particularly those with AGA for less than 10 years, responded more positively to the treatment. Early intervention led to quicker and more significant results. Overall satisfaction among dermatologists was high, with 86.2% expressing positive feedback on the therapy. In terms of treatment outcomes, 51.7% of dermatologists observed visible results within 4-6 months, while 34.5% noticed a significant reduction in hair fall within 8-12 weeks. Improvements in scalp health were reported by 48.3%, and 51.7% saw an increased hair density within 3-4 months. Despite mild side effects such as scalp irritation, dryness, flaking, and occasional issues like folliculitis, headaches, itching, and redness, patient satisfaction remained high. Dermatologists reported that 93.1% of patients experienced faster and better hair regrowth with Capixyl™ compared to Minoxidil alone. Suggestions for improving the formulation included incorporating peptides like Saw Palmetto and enhancing product packaging to better meet patient needs. Discussion: The combination of Minoxidil, Finasteride, and Capixyl™ yielded positive clinical outcomes, especially in improving hair density, scalp health, and overall patient satisfaction. Dermatologists found that Capixyl™ peptides enhanced the therapeutic effect, promoting hair regrowth and improving compliance. While side effects were generally mild, there were suggestions to further improve the formulation by adding additional peptides like Saw Palmetto. Conclusion: The combination of Minoxidil and Finasteride fortified with Capixyl™ presents a promising therapeutic option for managing AGA. Dermatologists reported significant improvements in hair density, scalp health, and patient satisfaction. With its favorable efficacy and manageable side effects, this formulation proves to be a valuable addition to the treatment landscape for AGA.Keywords: androgenetic alopecia, combination therapy, minoxidil, finasteride, capixyl
Procedia PDF Downloads 15350 Epidemiological Patterns of Pediatric Fever of Unknown Origin
Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta
Abstract:
Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases
Procedia PDF Downloads 29349 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 369348 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 256