Search results for: biochemical oxygen demand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5232

Search results for: biochemical oxygen demand

852 Subjective Well-Being, Emotional Regulation and Motivational Orientation of Competition Athletes

Authors: Cristina Costa-Lobo, Priscila Martins, Silvia Amado Cordeiro, Ana Campina

Abstract:

Behavior directed toward high levels of sports performance and excellence implies task-focused processes, processes of cognitive and emotional regulation. This research aims to understand if subjective well-being, emotional regulation, and motivational orientation influence the performance of competitive athletes. The sample of this study is a non-probabilistic convenience sample, consisting of 50 male athletes, aged 14 to 15 years, who belong to training teams integrated in the pedagogical department of a sports club in the North of Portugal. In terms of performance, the distinction between team A and team B is due to the championships in which the respective athletes participate. Team A participates in national championships where the levels of demand and challenge are more pronounced and the team B only participates in championships at the district level. Was verified the internal consistency of the subjective happiness scale, the emotional regulation scale, and the motivational orientation questionnaire. SPSS, version 22.0, was used in the data treatment. When comparing the dimensions of emotional regulation with performance, it can be seen that athletes with lower sports scores have higher levels of emotional control and emotional self-awareness. As far as situational responsiveness is concerned, only the emotional self-control dimension and the emotional self-awareness dimension show an influence on the income, although, contrary to what would be expected, they appear to be associated with lower incomes. When comparing the motivational orientation with the athletic performance, it is verified that the athletes with the highest performance present an ego-oriented motivation, evidencing the athletes with a lower performance athletic tendency towards the task orientation. Only the ego-oriented dimension seems to be associated with high sport performance. The motivational orientation for the ego and the dimensions emotional control and emotional self-awareness are presented in this study as having influence on sports performance. Following these studies that have shown concern with the characterization of the best athletes and the promotion of higher sports performances, this work contributes to the signaling of psychological variables associated with high sports income.

Keywords: subjective well-being, emotional regulation, motivational orientation, sports performance

Procedia PDF Downloads 276
851 Shear Strength Parameters of an Unsaturated Lateritic Soil

Authors: Jeferson Brito Fernades, Breno Padovezi Rocha, Roger Augusto Rodrigues, Heraldo Luiz Giacheti

Abstract:

The geotechnical projects demand the appropriate knowledge of soil characteristics and parameters. The determination of geotechnical soil parameters can be done by means of laboratory or in situ tests. In countries with tropical weather, like Brazil, unsaturated soils are very usual. In these soils, the soil suction has been recognized as an important stress state variable, which commands the geo-mechanical behavior. Triaxial and direct shear tests on saturated soils samples allow determine only the minimal soil shear strength, in other words, no suction contribution. This paper briefly describes the triaxial test with controlled suction as well as discusses the influence of suction on the shear strength parameters of a lateritic tropical sandy soil from a Brazilian research site. In this site, a sample pit was excavated to retrieve disturbed and undisturbed soil blocks. The samples extracted from these blocks were tested in laboratory to represent the soil from 1.5, 3.0 and 5.0 m depth. The stress curves and shear strength envelopes determined by triaxial tests varying suction and confining pressure are presented and discussed. The water retention characteristics on this soil complement this analysis. In situ CPT tests were also carried out at this site in different seasons of the year. In this case, the soil suction profile was determined by means of the soil water retention. This extra information allowed assessing how soil suction also affected the CPT data and the shear strength parameters estimative via correlation. The major conclusions of this paper are: the undisturbed soil samples contracted before shearing and the soil shear strength increased hyperbolically with suction; and it was possible to assess how soil suction also influenced CPT test data based on the water content soil profile as well as the water retention curve. This study contributed with a better understanding of the shear strength parameters and the soil variability of a typical unsaturated tropical soil.

Keywords: site characterization, triaxial test, CPT, suction, variability

Procedia PDF Downloads 416
850 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 498
849 A Real-World Evidence Analysis of Associations between Costs, Quality of Life and Disease-Severity Indicators of Alzheimer’s Disease in Thailand

Authors: Khachen Kongpakwattana, Charungthai Dejthevaporn, Orapitchaya Krairit, Piyameth Dilokthornsakul, Devi Mohan, Nathorn Chaiyakunapruk

Abstract:

Background: Although an increase in the burden of Alzheimer’s disease (AD) is evident worldwide, knowledge of costs and health-related quality of life (HR-QoL) associated with AD in Low- and Middle-Income Countries (LMICs) is still lacking. We, therefore, aimed to collect real-world cost and HR-QoL data, and investigate their associations with multiple disease-severity indicators among AD patients in Thailand. Methods: We recruited AD patients aged ≥ 60 years accompanied by their caregivers at a university-affiliated tertiary hospital. A one-time structured interview was conducted to collect disease-severity indicators, HR-QoL and caregiving information using standardized tools. The hospital’s database was used to retrieve healthcare resource utilization occurred over 6 months preceding the interview date. Costs were annualized and stratified based on cognitive status. Generalized linear models were employed to evaluate determinants of costs and HR-QoL. Results: Among 148 community-dwelling patients, average annual total societal costs of AD care were 8,014 US$ [95% Confidence Interval (95% CI): 7,295 US$ - 8,844 US$] per patient. Total costs of patients with severe stage (9,860 US$; 95% CI: 8,785 US$ - 11,328 US$) were almost twice as high as those of mild stage (5,524 US$; 95% CI: 4,649 US$ - 6,593 US$). The major cost driver was direct medical costs, particularly those incurred by AD prescriptions. Functional status was the strongest determinant for both total costs and patient’s HR-QoL (p-value < 0.001). Conclusions: Our real-world findings suggest the distinct major cost driver which results from expensive AD treatment, emphasizing the demand for country-specific cost evidence. Increases in cognitive and functional status are significantly associated with decreases in total costs of AD care and improvement on patient’s HR-QoL.

Keywords: Alzheimer's disease, associations, costs, disease-severity indicators, health-related quality of life

Procedia PDF Downloads 143
848 Ruminal Fermentation of Biologically Active Nitrate- and Nitro-Containing Forages

Authors: Robin Anderson, David Nisbet

Abstract:

Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are biologically active chemicals that can accumulate naturally in rangeland grasses forages consumed by grazing cattle, sheep and goats. While toxic to livestock if accumulations and amounts consumed are high enough, particularly in animals having no recent exposure to the forages, these chemicals are known to be potent inhibitors of methane-producing bacteria inhabiting the rumen. Consequently, there is interest in examining their potential use as anti-methanogenic compounds to decrease methane emissions by grazing ruminants. Presently, rumen microbes, collected freshly from a cannulated Holstein cow maintained on 50:50 corn based concentrate:alfalfa diet were mixed (10 mL fluid) in 18 x 150 mm crimp top tubes with 0.5 of high nitrate-containing barley (Hordeum vulgare; containing 272 µmol nitrate per g forage dry matter), and NPA- or NPOH- containing milkvetch forages (Astragalus canadensis and Astragalus miser containing 80 and 174 soluble µmol NPA or NPOH/g forage dry matter respectively). Incubations containing 0.5 g alfalfa (Medicago sativa) were used as controls. Tubes (3 per each respective forage) were capped and incubated anaerobically (using oxygen free carbon dioxide) for 24 h at 39oC after which time amounts of total gas produced were measured via volume displacement and headspace samples were analyzed by gas chromatography to determine concentrations of hydrogen and methane. Fluid samples were analyzed by gas chromatography to measure accumulations of fermentation acids. A completely randomized analysis of variance revealed that the nitrate-containing barley and both the NPA- and the NPOH-containing milkvetches significantly decreased methane production, by > 50%, when compared to methane produced by populations incubated similarly with alfalfa (70.4 ± 3.6 µmol/ml incubation fluid). Accumulations of hydrogen, which are typically increased when methane production is inhibited, by incubations with the nitrate-containing barley and the NPA- and NPOH-containing milkvetches did not differ from accumulations observed in the alfalfa controls (0.09 ± 0.04 µmol/mL incubation fluid). Accumulations of fermentation acids produced in the incubations containing the high-nitrate barley and the NPA- and NPOH-containing milkvetches likewise did not differ from accumulations observed in incubations containing alfalfa (123.5 ± 10.8, 36.0 ± 3.0, 17.1 ± 1.5, 3.5 ± 0.3, 2.3 ± 0.2, 2.2 ± 0.2 µmol/mL incubation fluid for acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate, respectively). This finding indicates the microbial populations did not compensate for the decreased methane production via compensatory changes in production of fermentative acids. Stoichiometric estimation of fermentation balance revealed that > 77% of reducing equivalents generated during fermentation of the forages were recovered in fermentation products and the recoveries did not differ between the alfalfa incubations and those with the high-nitrate barley or the NPA- or NPOH-containing milkvetches. Stoichiometric estimates of amounts of hexose fermented similarly did not differ between the nitrate-, NPA and NPOH-containing incubations and those with the alfalfa, averaging 99.6 ± 37.2 µmol hexose consumed/mL of incubation fluid. These results suggest that forages containing nitrate, NPA or NPOH may be useful to reduce methane emissions of grazing ruminants provided risks of toxicity can be effectively managed.

Keywords: nitrate, nitropropanol, nitropropionic acid, rumen methane emissions

Procedia PDF Downloads 129
847 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis

Authors: Pratima Kumari, Sukha Ranjan Samadder

Abstract:

This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.

Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach

Procedia PDF Downloads 54
846 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: biometrics, hand geometry features, inner knuckle print, recognition

Procedia PDF Downloads 220
845 Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models

Authors: Gao Youtao, Zhao Tanran, Jin Bingyu, Xu Bo

Abstract:

Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy.

Keywords: extended Kalman filter, autonomous orbit determination, quasi-periodic orbit, navigation constellation

Procedia PDF Downloads 282
844 Transitioning Classroom Students to Working Learners: Lived Experiences of Senior High School Work Immersion Students

Authors: Rico Herrero

Abstract:

The study looked into the different lived experiences of senior high school to work immersion and how they were able to cope up in the transition stage from being classroom students into immersion students in work immersion site. The participants of the study were the ten senior high school students from Punta Integrated School. Using interview guide questions, the researchers motivated the participants to reveal their thoughts, feelings, and experiences in the interviews via video recording. The researchers utilized the qualitative research design, but the approach used was grounded theory. The findings revealed the participants’ lived experiences on how to cope or overcome the transition stage during the work immersion program. They unanimously responded to the interview questions. And based on the themes that emerged from the testimonies of the Senior High School students, the classroom learners benefited a lot from authentic learning opportunity of immersion program. Work immersion provides the students the opportunity to learn and develop their skills/ competencies related to the field of specialization. The hands-on training provides them simulation of work. They realized that theoretical learning in school is not enough to be equipped to work. Immersion program also provides venue for values and standard transformation. Senior High School students felt a high demand of self-confidence at the beginning of their race. Good thing, self-esteem of an individual helps bring out one’s potential at its best. Students find it challenging to get along with people in all ages. But, the endeavour absolutely helps them to grow maturely. Participants also realized that it’s not easy to deal with time pressure. Hence, the immersion program taught them to learn about time management. Part of the best training is to expose the learners to the harsh reality. Despite of the things that the school had taught them, still, students realized that they are not yet ready to deal with the demands of work. Furthermore, they also found out that they need to develop an interpersonal skill to improve their human relationships.

Keywords: grounded theory, lived experiences, senior high school, work immersion

Procedia PDF Downloads 141
843 Using Urban Conversion to Green Public Space as a Tool to Generate Urban Change: Case of Seoul

Authors: Rachida Benabbou, Sang Hun Park, Hee Chung Lee

Abstract:

The world’s population is increasing with unprecedented speed, leading to fast growing urbanization pace. Cities since the Industrial revolution had evolved to fit the growing demand on infrastructure, roads, transportation, and housing. Through this evolution, cities had grown into grey, polluted, and vehicle-oriented urban areas with a significant lack of green spaces. Consequently, we ended up with low quality of life for citizens. Therefore, many cities, nowadays, are revising the way we think urbanism and try to grow into more livable and citizen-friendly, by creating change from the inside out. Thus, cities are trying to bring back nature in its crowded grey centers and regenerate many urban areas as green public spaces not only as a way to give new breath to the city, but also as a way to create change either in the environmental, social and economic levels. The city of Seoul is one of the fast growing global cities. Its population is over 12 million and it is expected to continue to grow to a point where the quality of life may seriously deteriorate. As most green areas in Seoul are located in the suburbs in form of mountains, the city’s urban areas suffer from lack of accessible green spaces in a walking distance. Understanding the gravity and consequences of this issue, Seoul city is undergoing major changes. Many of its projects are oriented to be green public spaces where citizens can enjoy the public life in healthy outdoors. The aim of this paper is to explore the results of urban conversions into green public spaces. Starting with different locations, nature, size, and scale, these conversions can lead to significant change in the surrounding areas, thus can be used as an efficient tool of regeneration for urban areas. Through a comparative analysis of three different types of urban conversions projects in the city of Seoul, we try to show the positive urban influence of the outcomes, in order to encourage cities to use green spaces as a strategic tool for urban regeneration and redevelopment.

Keywords: urban conversion, green public space, change, urban regeneration

Procedia PDF Downloads 305
842 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 132
841 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 329
840 In vitro Antioxidant Activity and Total Phenolic Content of Dillenia indica and Garcinia penducalata, Commonly Used Fruits in Assamese Cuisine

Authors: M. Das, B. P. Sarma, G. Ahmed

Abstract:

Human diet can be a major source of antioxidants. Poly¬phenols, which are organic compounds present in the regular human diet, have good antioxidant property. Most of the diseases are detected too late and that cause irre¬versible damage to the body. Therefore food that forms the natural source of antioxidants can prevent free radi¬cals from damaging our body tissues. Dillenia indica and Garcinia penducalata are two major fruits, easily available in Assam, North eastern Indian state. In the present study, the in vitro antioxi¬dant properties of the fruits of these plants are compared as the decoction of these fruits form a major part of Assamese cuisine. DPPH free radical scavenging activity of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were carried out by the methods of Cotelle A et al. (1996). Different concentrations ranging from 10–110 ug/ml of the extracts were added to 100 uM of DPPH (2,2, Diphenyl-2-picryl hydrazyl) and the absor¬bance was read at 517 nm after incubation. Ascorbic acid was used as the standard. Different concentrations of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were mixed with sodium nitroprusside and incubated. Griess reagent was added to the mixtures and their optical density was read at 546 nm following the method of Marcocci et al. (1994). Ascorbic acid was used as the standard. In order to find the scavenging activity of the extracts against hydroxyl radicals, the method of Kunchandy & Ohkawa (1990) was followed.The superoxide scavenging activity of the methanol, petroleum ether and water extracts of the fruits was deter¬mined by the method of Robak & Gryglewski (1998).Six replicates were maintained in each of the experiments and their SEM was evaluated based on which, non linear regres¬sion (curve fit), exponential growth were derived to calculate the IC50 values of the SAWE and standard compounds. All the statistical analyses were done by using paired t test. The hydroxyl radical scavenging activity of the various extracts of D. indica exhibited IC50 values < 110 ug/ml concentration, the scavenging activity of the extracts of G. penducalata was surprisingly>110 ug/ml.Similarly the oxygen free radical scavenging activity of the different extracts of D. indica exhibited an IC50 value of <110 ug/ml but the methanolic extract of the same exhib¬ited a better free radical scavenging activity compared to that of vitamin C. The methanolic extract of D. indica exhibited an IC50 value better than that of vitamin C. The DPPH scavenging activities of the various extracts of D. indica and G. penducalata were <110 ug/ml but the methanolic extract of D. indica exhibited an IC50 value bet¬ter than that of vitaminc C.The higher amounts of phenolic content in the methanolic extract of D. indica might be one of the major causes for its enhanced in vitro antioxidant activity.The present study concludes that Dillenia indica and Garcinia penducalata both possesses anti oxidant activi¬ties. The anti oxidant activity of Dillenia indica is superior to that of Garcinia penducalata due to its higher phenolic content

Keywords: antioxidants, free radicals, phenolic, scavenging

Procedia PDF Downloads 595
839 The Feasibility of a Protected Launch Site near Melkbosstrand for a Public Transport Ferry across Table Bay, Cape Town

Authors: Mardi Falck, André Theron

Abstract:

Traffic congestion on the Northern side of Table Bay is a major problem. In Gauteng, the implementation of the Gautrain between Pretoria and Johannesburg, solved their traffic congestion. In 2002 two entrepreneurs endeavoured to implement a hovercraft ferry service across the bay from Table View to the Port of Cape Town. However, the EIA process proved that disgruntled residents from the area did not agree with their location for a launch site. 17 years later the traffic problem has not gone away, but instead the congestion has increased. While property prices in the City Bowl of Cape Town are ever increasing, people tend to live more on the outskirts of the CBD and commute to work. This means more vehicles on the road every day and the public transport services cannot keep up with the demand. For this reason, the study area of the previous hovercraft plans is being extended further North. The study’s aim is thus to determine the feasibility of a launch site North of Bloubergstrand to launch and receive a public transport ferry across Table Bay. The feasibility is being established by researching ferry services across the world and on what makes them successful. Different types of ferries and their operational capacities in terms of weather and waves are researched and by establishing the offshore and nearshore wind and wave climate for the area, an appropriate protected launch site is determined. It was concluded that travel time could potentially be halved. A hovercraft proved to be the most feasible ferry type, because it does not require a conventional harbour. Other types of vessels require a protected launch site because of the wave climate. This means large breakwaters that influence the cost substantially. The Melkbos Cultural Centre proved to be the most viable option for the location of the launch site, because it already has buildings and infrastructure. It is recommended that, if a harbour is chosen for the proposed ferry service, it could be used for more services like fishing, eco-tourism and leisure. Further studies are recommended to optimise the feasibility of such a harbour.

Keywords: Cape Town, ferry, public, Table Bay

Procedia PDF Downloads 152
838 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation

Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent

Abstract:

Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.

Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene

Procedia PDF Downloads 208
837 Study on Principals Using Change Leadership to Promote School Innovation: A Case Study of a Primary School in Taiwan

Authors: Chih-Wen Fan

Abstract:

Backgrounds/ Research goals : School improvement requires change leadership, which often means discomfort. Principals are the key people that determine the effectiveness of schools. In an era of organization’s pursuit of speed and effectiveness, school administration has to be accountable and innovative. Effective principals work to improve achievement by focusing on the administrative and teaching quality of improvement. However, there is a lack of literature addressing the relevant case studies on school change leadership. This article explores how principals can use change leadership to drive school change. It analyze the driving factors of principal changes in the case school, the beliefs of change leadership, specific methods, and what impact they have. Methods: This study applies the case study research method to the selected primary school located in an urban area for case study, which has achieved excellent performance after reform and innovation. The researchers selected an older primary school located in an urban area that was transformed into a high-performance primary school after changes were enacted by the principal. The selected case was recommended by three supervisors of the Education Department. The case school underwent leadership change by the new principal during his term, and won an award from the Ministry of Education. Total of 8 teachers are interviewed. The data encoding includes interviews and documents. Expected results/ conclusions: The conclusions of the study are, as follows: (1) The influence for Principal Lin's change leadership is from internal and external environmental development and change pressures. (2) The principal's belief in change leadership is to recognize the sense of crisis, and to create a climate of change and demand for change. (3) The principal's specific actions are intended to identify key members, resolve resistance, use innovative thinking, and promote organizational learning. (4) Principal Lin's change leadership can enhance the professional functions of all employees through appropriate authorization. (5) The effectiveness of change leadership lies in teachers' participation in decision-making; the school's reputation has been enhanced through featured courses.

Keywords: change leadership, empowerment, crisis awareness, case study

Procedia PDF Downloads 138
836 Market Driven Unsustainability: Tragedy of Indigenous Professionals

Authors: Sitaram Dahal

Abstract:

Sustainable Development, a universal need for the present generation and the future generation, is an accepted way to assure intra and inter-generational equity. International movements like Rio Earth Summit 1992, Stockholm Conference 1972, Kyoto Protocol, Sustainable Development Goals (SDGs) proclaim the need of sustainable globe. The socio- economic disparity prevailing in the society shows that the indigenous peoples are living life far below poverty line. These indigenous people, aboriginal social groups sharing common cultural values and with a unique identity, are away from development being merely focused on the growth. Though studies suggest that most of the indigenous practices are often environment-friendly, alert about the plunging trend of the practices. This study explores the trend of intergenerational transmission of indigenous profession of pottery making of Kumal community (Meghauli Village Development Committee of Chitwan district) and factors affecting the trend. The SD indicators - contribution of IP to well-being of pottery makers had been query in the study. The study reveals that the pottery making profession can stand sustainable in terms of environment and socio-economic capital compared to modern technologies. However, the number of practitioners has been decreasing and youths hardly show interest to continue their indigenous profession. The new generations are not in a stage of accepting pottery in complete profession, that challenges the social and cultural sustainability of the profession. Indigenous profession demand people investments over modern technology and innovations. The relative investment of human labour is dramatically high with the indigenous profession. In addition, the fashion and innovations of market rule challenge the sustainability of the pottery making profession. The practice is limited to small cluster as a show piece at present. The study illustrates the market driven unsustainability of indigenous profession of Kumal community.

Keywords: professional unsustainability, pottery making, Kumal Community, Indigenous Professoin

Procedia PDF Downloads 258
835 High Unmet Need and Factors Associated with Utilization of Contraceptive Methods among Women from the Digo Community of Kwale, Kenya

Authors: Mochache Vernon, Mwakusema Omar, Lakhani Amyn, El Busaidy Hajara, Temmerman Marleen, Gichangi Peter

Abstract:

Background: Utilization of contraceptive methods has been associated with improved maternal and child health (MCH) outcomes. Unfortunately, there has been sub-optimal uptake of contraceptive services in the developing world despite significant resources being dedicated accordingly. It is imperative to granulate factors that could influence uptake and utilization of contraception. Methodology: Between March and December 2015, we conducted a mixed-methods cross-sectional study among women of reproductive age (18-45 years) from a pre-dominantly rural coastal Kenyan community. Qualitative approaches involved focus group discussions as well as a series of key-informant interviews. We also administered a sexual and reproductive health survey questionnaire at the household level. Results: We interviewed 745 women from 15 villages in Kwale County. The median (interquartile range, IQR) age was 29 (23-37) while 76% reported being currently in a marital union. Eighty-seven percent and 85% of respondents reported ever attending school and ever giving birth, respectively. Respondents who had ever attended school were more than twice as likely to be using contraceptive methods [Odds Ratio, OR = 2.1, 95% confidence interval, CI: 1.4-3.4, P = 0.001] while those who had ever given birth were five times as likely to be using these methods [OR = 5.0, 95% CI: 1.7-15.0, P = 0.004]. The odds were similarly high among women who reported attending antenatal care (ANC) [OR = 4.0, 95% CI: 1.1-14.8, P = 0.04] as well as those who expressly stated that they did not want any more children or wanted to wait longer before getting another child [OR = 6.7, 95% CI: 3.3-13.8, P<0.0001]. Interviewees reported deferring to the ‘wisdom’ of an older maternal figure in the decision-making process. Conclusions: Uptake and utilization of contraceptive methods among Digo women from Kwale, Kenya is positively associated with demand-side factors including educational attainment, previous birth experience, ANC attendance and a negative future fertility desire. Interventions to improve contraceptive services should focus on engaging dominant maternal figures in the community.

Keywords: unmet need, utilization of contraceptive methods, women, Digo community

Procedia PDF Downloads 183
834 The Examination And Assurance Of The Microbiological Safety Pertaining To Raw Milk And its Derived Processed Products

Authors: Raana Babadi Fathipour

Abstract:

The production of dairy holds significant importance in the sustenance of billions of individuals worldwide, as they rely on milk and its derived products for daily consumption. In addition to being a source of essential nutrients crucial for human well-being, such as proteins, fats, vitamins, and minerals; dairy items are witnessing an increasing demand worldwide. Amongst all the factors contributing to the quality and safety assurance of dairy products, the strong focus lies on maintaining high standards in raw milk procurement. Raw milk serves as an externally nutritious medium for various microorganisms due to its inherent properties. This poses a considerable challenge for the dairy industry in ensuring that microbial contamination is minimized throughout every stage of the value chain. Despite implementing diverse process technologies—both conventional and innovative—the occurrence of microbial spoilage still results in substantial losses within this industry context. Moreover, milk and dairy products have been associated with numerous cases of foodborne illnesses across the globe. Various pathogens such as Salmonella serovars, Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and enterotoxin producing Staphylococcus aureus are commonly identified as the culprits behind these outbreaks in the dairy industry. The effective management of food safety within this sector necessitates a proactive and risk-based approach to reform. However, this strategy presents difficulties for developing nations where informal value chains dominate the dairy sector. Whether operating on a small or large scale or falling within formal or informal realms, it is imperative that the dairy industry adheres to principles of good hygiene practices and good manufacturing practices. Additionally, identifying and managing potential sources of contamination is crucial in mitigating challenges pertaining to quality and safety precautions.

Keywords: dairy value chain, microbial contamination, food safety, hygiene

Procedia PDF Downloads 71
833 Groundwater Arsenic Contamination in Gangetic Jharkhand, India: Risk Implications for Human Health and Sustainable Agriculture

Authors: Sukalyan Chakraborty

Abstract:

Arsenic contamination in groundwater has been a matter of serious concern worldwide. Globally, arsenic contaminated water has caused serious chronic human diseases and in the last few decades the transfer of arsenic to human beings via food chain has gained much attention because food represents a further potential exposure pathway to arsenic in instances where crops are irrigated with high arsenic groundwater, grown in contaminated fields or cooked with arsenic laden water. In the present study, the groundwater of Sahibganj district of Jharkhand has been analysed to find the degree of contamination and its probable associated risk due to direct consumption or irrigation. The present study area comprising of three blocks, namely Sahibganj, Rajmahal and Udhwa in Sahibganj district of Jharkhand state, India, situated in the western bank of river Ganga has been investigated for arsenic contamination in groundwater, soil and crops predominantly growing in the region. Associated physicochemical parameters of groundwater including pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation reduction potential (ORP), ammonium, nitrate and chloride were assessed to understand the mobilisation mechanism and chances of arsenic exposure from soil to crops and further into the food chain. Results suggested the groundwater to be dominantly Ca-HCO3- type with low redox potential and high total dissolved solids load. Major cations followed the order of Ca ˃ Na ˃ Mg ˃ K. The concentration of major anions was found in the order of HCO3− > Cl− > SO42− > NO3− > PO43− varied between 0.009 to 0.20 mg L-1. Fe concentrations of the groundwater samples were below WHO permissible limit varying between 54 to 344 µg L-1. Phosphate concentration was high and showed a significant positive correlation with arsenic. As concentrations ranged from 7 to 115 µg L-1 in premonsoon, between 2 and 98 µg L-1 in monsoon and 1 to 133µg L-1 in postmonsoon season. Arsenic concentration was found to be much higher than the WHO or BIS permissible limit in majority of the villages in the study area. Arsenic was also seen to be positively correlated with iron and phosphate. PCA results demonstrated the role of both geological condition and anthropogenic inputs to influence the water quality. Arsenic was also found to increase with depth up to 100 m from the surface. Calculation of carcinogenic and non-carcinogenic effects of the arsenic concentration in the communities exposed to the groundwater for drinking and other purpose indicated high risk with an average of more than 1 in a 1000 population. Health risk analysis revealed high to very high carcinogenic and non-carcinogenic risk for adults and children in the communities dependent on groundwater of the study area. Observation suggested the groundwater to be considerably polluted with arsenic and posing significant health risk for the exposed communities. The mobilisation mechanism of arsenic also could be identified from the results suggesting reductive dissolution of Fe oxyhydroxides due to high phosphate concentration from agricultural input arsenic release from the sediments along river Ganges.

Keywords: arsenic, physicochemical parameters, mobilisation, health effects

Procedia PDF Downloads 228
832 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 155
831 In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems

Authors: Vidia A. Nuraini, Eugene M. H. Yee, Mohan Bhadbhade, David StC. Black, Naresh Kumar

Abstract:

Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated.

Keywords: Diels-Alder reaction, flavonoids, Mannich reaction, ortho-quinone methide.

Procedia PDF Downloads 251
830 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
829 Sustainable Mitigation of Urban Stormwater Runoff: The Applicability of Green Infrastructure Approach in Finnish Climate

Authors: Rima Almalla

Abstract:

The purpose of the research project in Geography is to evaluate the applicability of urban green infrastructure approach in Finnish climate. The key focus will be on the operation and efficiency of green infrastructure on urban stormwater management. Green infrastructure approach refers to the employment of sufficient green covers as a modern and smart environmental solution to improve the quality of urban environments. Green infrastructure provides a wide variety of micro-scale ecosystem services, such as stormwater runoff management, regulation of extreme air temperatures, reduction of energy consumption, plus a variety of social benefits and human health and wellbeing. However, the cold climate of Finland with seasonal ground frost, snow cover and relatively short growing season bring about questions of whether green infrastructure works as efficiently as expected. To tackle this question, green infrastructure solutions will be studied and analyzed with manifold methods: stakeholder perspectives regarding existing and planned GI solutions will be collected by web based questionnaires, semi structured interviews and group discussions, and analyzed in both qualitative and quantitative methods. Targeted empirical field campaigns will be conducted on selected sites. A systematic literature review with global perspective will support the analyses. The findings will be collected, compiled and analyzed using geographic information systems (GIS). The findings of the research will improve our understanding of the functioning of green infrastructure in the Finnish environment in urban stormwater management, as a landscape element for citizens’ wellbeing, and in climate change mitigation and adaptation. The acquired information will be shared with stakeholders in interactive co-design workshops. As green covers have great demand and potential globally, the conclusions will have relevance in other cool climate regions and may support Finnish business in green infrastructure sector.

Keywords: climate change adaptation, climate change, green infrastructure, stormwater

Procedia PDF Downloads 167
828 The Role of Religion in the Foundation of State [Pakistan]

Authors: Hafiz Atif Iqbal

Abstract:

It is a confirmed historical fact that Pakistan is an ideological state, and religion has played a very important and vital role in the establishment of Pakistan. This is the reason why the slogan "What does Pakistan mean is "la ilaha illa Allah" is embedded in the heart of every Muslim. This slogan became so popular in the dimensions of India that Movement of Pakistan and this slogan became inseparable, and that is why Quaid-e-Azam said: "Twenty-five percent share in Movement of Pakistan belongs to the creator of this slogan, Asghar Soudai Sialkoti." This slogan later formed the basis of the two-nation theory, whereby the Hindus and Muslims of the sub-continent were declared to be two separate and complete nations, completely different from each other in terms of their religion, affairs, dress, lifestyle, and values. In this regard, on March 23, 1940, at the historic meeting of the Muslim League in Lahore, in which the Lahore Resolution was passed, Quaid-e-Azam said: Islam and Hinduism are not just religions, but actually two different social systems. Therefore, this desire should be called a dream and a dream that Hindus and Muslims will be able to create a common nationality together. These people do not marry each other, nor do they eat at the same table. I say in a nutshell that they belong to two different civilizations, and these civilizations are based on concepts and facts that contradict each other and are against each other. Quaid-e-Azam, while addressing Peshawar in January 1948, said: "We did not demand Pakistan just to get a separate piece of land, but we wanted to get a laboratory where we can test the principles of Islam. The distinction of the concept of Islamic government should be kept in mind that the authority of obedience and loyalty in it is God Almighty, whose practical means of compliance are the rules and principles of the Holy Quran. Only the rules of the Holy Quran can determine the limits of our freedom and restrictions in the state and society. In other words, the Islamic government is the government of Quranic principles and rules. All these facts make it clear that religion has played a fundamental and important role in the establishment of Pakistan.

Keywords: la ilaha illa allah, asghar soudai sialkoti, lahore resolution, quaid-e-azam

Procedia PDF Downloads 99
827 Perceptions of Community Members in Lephalale Area, Limpopo Province, Towards Water Conservation: Development of a Psychological Model

Authors: M. L. Seretlo-Rangata, T. Sodi, S. Govender

Abstract:

Despite interventions by various governments to regulate water demand and address water scarcity, literature shows that billions of people across the world continue to struggle with access because not everyone contributes equally to conservation efforts. Behavioral factors such as individual and collective aspects of cognition and commitment have been found to play an important role in water conservation. The aim of the present study was to explore the perceptions of community members in the Lephalale area, Limpopo province, towards water conservation with a view to developing an explanatory psychological model on water conservation. Twenty (20) participants who relied on communal taps to access water in Lephalale Local Municipality, Limpopo province, were selected through purposeful sampling. In-depth, semi-structured, individual face-to-face interviews were used to gather data and were analyzed utilizing thematic content analysis (TCA). The research findings revealed that there are various psychological effects of water scarcity on communities, such as emotional distress, interpersonal conflicts and disruptions of daily activities of living. Additionally, the study results showed that the coping strategies developed by participants to deal with water scarcity included adopting alternative water use behaviors as well as adjusting current behaviors and lifestyles. Derived from the study findings, a psychological model of water conservation was developed. The model incorporates some ideas from the Value-Belief-Norm (VBN) theory and the Afrocentric theory. The model suggests that people’s worldviews, including their values, beliefs and culture, are significant determinants of their pro-environmental behaviors. The study concludes by recommending that authorities and policymakers should consider psychological factors when developing water management programs, strategies and interventions with the consultation of psychology experts.

Keywords: water conservation, psychological model, pro-environmental behaviour, conservation psychology, water-use behaviour

Procedia PDF Downloads 71
826 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 167
825 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 258
824 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 205
823 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 278